Molekularstruktur und Fluoreszenz aus ππ*-angeregten Zuständen organischer Moleküle/ Molecular Structure and Fluorescence from ππ* Excited States of Organic Molecules

1975 ◽  
Vol 30 (12) ◽  
pp. 1691-1695
Author(s):  
Filip Fratev

Abstract Molecular The classification of the types of excited molecular structures suggested in a preceding paper1, can be used for interpretation and prediction of fluorescence ability of large classes of conjugated organic molecules. Possible electronic conditions for S2- and dual fluorescence are discussed. An extension of Kasha's rule is suggested.

2020 ◽  
Vol 4 (12) ◽  
pp. 3602-3615 ◽  
Author(s):  
Jonathan S. Ward ◽  
Andrew Danos ◽  
Patrycja Stachelek ◽  
Mark A. Fox ◽  
Andrei S. Batsanov ◽  
...  

This work shows that trifluoromethyl (CF3) substituents can be used to increase the rate of thermally activated delayed fluorescence (TADF) in conjugated organic molecules by tuning the excitonic character of the singlet and triplet excited states.


2016 ◽  
Vol 18 (30) ◽  
pp. 20615-20626 ◽  
Author(s):  
Geetha S. Remya ◽  
Cherumuttathu H. Suresh

The molecular electrostatic potential parameters show a strong linear correlation with Hammett constants and serve as tools for designing π-conjugated organic molecules with highly tuned electronic properties.


1993 ◽  
Vol 90 (23) ◽  
pp. 11297-11301 ◽  
Author(s):  
C B Gorman ◽  
S R Marder

A computational method was devised to explore the relationship of charge separation, geometry, molecular dipole moment (mu), polarizability (alpha), and hyperpolariz-abilities (beta, gamma) in conjugated organic molecules. We show that bond-length alternation (the average difference in length between single and double bonds in the molecule) is a key structurally observable parameter that can be correlated with hyperpolarizabilities and is thus relevant to the optimization of molecules and materials. By using this method, the relationship of bond-length alternation, mu, alpha, beta, and gamma for linear conjugated molecules is illustrated, and those molecules with maximized alpha, beta, and gamma are described.


2021 ◽  
Vol 19 (2) ◽  
pp. 273-298
Author(s):  
Sakineh Navidi-Baghi ◽  
Ali Izanloo ◽  
Alireza Qaeminia ◽  
Alireza Azad

Abstract The molecular structure of a complex metaphor comprises two or more atomic metaphorical parts, known as primary metaphors. In the same way, several molecular structures of metaphors may combine and form a mixture, known as mixed metaphors. In this study, different types of metaphoric integrations are reviewed and illustrated in figures to facilitate understanding the phenomena. Above all, we introduce double-ground metaphoric chain, a new form of metaphoric integration that has not been identified in the previous literature. Also, a distinction is made between single-ground and double-ground metaphoric chains. In the former, which has already been introduced, two basic metaphors are chained with the same form and have the same ground, while the latter includes two chained metaphors, one main metaphor plus a supportive one, with different grounds. In this analysis, we benefited from Conceptual Metaphor Theory (CMT) to analyse double-ground metaphoric chains. This study suggests that each metaphoric integration leads to a multifaceted conceptualization, in which each facet is related to one of the constituent micro-metaphors.


2018 ◽  
Vol 20 (38) ◽  
pp. 25085-25095 ◽  
Author(s):  
Vincent V. Duong ◽  
Alexander L. Ayzner

Electron delocalization in conjugated organic molecules is a rate-limiting step in maximizing the photo conversion efficiency of next generation photovoltaics and molecular electronics.


2009 ◽  
Vol 52 (6) ◽  
pp. 715-730 ◽  
Author(s):  
MingJian Yuan ◽  
YongJun Li ◽  
HuiBiao Liu ◽  
YuLiang Li

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5269
Author(s):  
Weili Zeng ◽  
Yujie Song ◽  
Jianning Zhang ◽  
Hong Chen ◽  
Ming Liu ◽  
...  

A clear understanding of the relationships between molecular structure and NIR reflectance (700–2500 nm) behavior is important and highly desirable for developing appropriate NIR-reflective materials to combat NIR heat radiation from sunlight. In this research, three groups of imide-based compounds have been adopted to investigate the influence of the intrinsic molecular structures on the NIR-reflective properties. It is found out that for the compounds with alkyl groups, the NIR reflectance will increase as the degree of the conjugated backbone increases, especially for the reflectance from 1750 nm to 2500 nm. In addition, despite that the alkyl or amine groups deteriorate the NIR reflectance, the NIR reflectance varies within a certain interval and the isomers with branched alkyl groups show identical or smaller NIR reflectance than those of isomers with linear alkyl groups. For different compounds, crystallinity seems to almost have no relationship with their NIR reflectance.


Sign in / Sign up

Export Citation Format

Share Document