Equation of State and Thermodynamic Properties of Molten Potassium Chloride to 1320 K and 6 kbar

1976 ◽  
Vol 31 (7) ◽  
pp. 769-776 ◽  
Author(s):  
G. Goldmann ◽  
K. Tödheide

Abstract From the Tait equation an equation of state containing five adjustable parameters was developed which fits experimental density data of molten potassium chloride to 1320 K and 6 kbar with a standard deviation of 0.04%. The thermal expansion coefficient, isothermal compressibility, internal pressure, and molar heat capacities at constant pressure and constant volume were calculated as functions of pressure and temperature from the equation of state and were compared with computer simulation results. A method for an estimate of high-pressure PVT data for molten salts is suggested which yields results superior to the best computed data presently available.

2018 ◽  
Vol 83 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Javid Safarov ◽  
Aygul Namazova ◽  
Astan Shahverdiyev ◽  
Egon Hassel

(p,?,T) data of 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4] over a wide range of temperatures, from 278.15 to 413.15 K, and pressures, p, up to 140 MPa are reported with an estimated ?0.01?0.08 % experimental relative average percent deviation (APD) in the density. The measurements were performed using an Anton Paar DMA HPM vibration tube densimeter. (p,?,T) Data for [OMIM][BF4] was fitted and the parameters of the applied equation were determined as a function of pressure and temperature. After a thorough analysis of literature values and validity of the used equation of state, various thermophysical properties, such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, internal pressure, heat capacities at constant pressure and volume, speed of sound and isentropic exponent at temperatures in the range 278.15?413.15 K and pressures p up to 140 MPa were calculated.


2015 ◽  
Vol 80 (11) ◽  
pp. 1423-1433 ◽  
Author(s):  
Gorica Ivanis ◽  
Aleksandar Tasic ◽  
Ivona Radovic ◽  
Bojan Djordjevic ◽  
Slobodan Serbanovic ◽  
...  

Densities data of n-hexane, toluene and dichloromethane at temperatures 288.15-413.15 K and at pressures 0.1-60 MPa, determined in our previous work, were fitted to the modified Tait equation of state. The fitted temperature-pressure dependent density data were used to calculate the derived properties: the isothermal compressibility, the isobaric thermal expansivity, the difference between specific heat capacity at constant pressure and at constant volume and the internal pressure, over the entire temperature and pressure intervals specified above. In order to assess the proposed modeling procedure, a comparison of the obtained values for the isothermal compressibility and the isobaric thermal expansivity with the corresponding literature data were performed. The average absolute percentage deviations for isothermal compressibility were: for n-hexane 2.01-3.64%, for toluene 0.64-2.48% and for dichloromethane 1.81-3.20%; for the isobaric thermal expansivity: for n-hexane 1.31-4.17%, for toluene 0.71-2.45% and for dichloromethane 1.16-1.61%. By comparing the obtained deviations values with those found in the literature it can be concluded that the presented results agree good with the literature data.


1976 ◽  
Vol 31 (6) ◽  
pp. 656-663 ◽  
Author(s):  
G. Goldmann ◽  
K. Tödheide

PVT data of molten KCl as a typical example for an ionic melt have been measured between 770 and 1050 °C at pressures up to 6 kbar. The experiments were performed in an internally heated pressure vessel containing argon as pressure transmitting medium. The salt was enclosed in a stainless steel cell the volume of which could be varied by means of a metal bellows and measured by monitoring the displacement of one end of the cell using an inductive transducer. The accuracy of the density data obtained is 0.15% for pressures below 2 kbar and 0.4% for higher pressures


Combined measurements of density and dielectric permittivity have been made for six n -alkanes from n -pentane to n -decane at temperatures from — 25 to 100 °C and a t various pressures up to 300 MPa. The molecular polarizability falls with increase in density in a nonlinear fashion. It displays a temperature effect whose magnitude is alternately large and small in the odd and even numbers of the series. The density data have been extensively compared with other sources, revealing significant devergences. The possibilities for an equation of state based on combined ε, ρ measurements are discussed.


1964 ◽  
Vol 86 (3) ◽  
pp. 320-326 ◽  
Author(s):  
E. S. Nowak

A parametric equation of state was derived for water and water vapor in the critical region from experimental P-V-T data. It is valid in that part of the critical region encompassed by pressures from 3000 to 4000 psia, specific volumes from 0.0400 to 0.1100 ft3/lb, and temperatures from 698 to 752 deg F. The equation of state satisfies all of the known conditions at the critical point. It also satisfies the conditions along certain of the boundaries which probably separate “supercritical liquid” from “supercritical vapor.” The equation of state, though quite simple in form, is probably superior to any equation heretofore derived for water and water vapor in the critical region. Specifically, the deviations between the measured and computed values of pressure in the large majority of the cases were within three parts in one thousand. This coincides approximately with the overall uncertainty in P-V-T measurements. In view of these factors, the author recommends that the equation be used to derive values for such thermodynamic properties as specific heat at constant pressure, enthalpy, and entropy in the critical region.


Author(s):  
Jorge Álvarez Juliá ◽  
María Del Carmen Grande ◽  
Carmen Raquel Barrero ◽  
Carlos Miguel Marschoff

2011 ◽  
Vol 225-226 ◽  
pp. 933-936 ◽  
Author(s):  
Zhe Ming Zhu

A crater blasting model of rock with pre-existing defects under blasting loads is established by using finite difference method. The defects are saturated with water and are randomly distributed. The defects include voids, pores and small open joints. A shock equation of state (EOS), obtained from the existing test results, is employed for the granite near the explosive charge, and for the granite far from the charge, a linear EOS is applied. A modified principal stress failure criterion is applied to determining the granite statuses. The granite dynamic strengths, which increase with strain rate, are calculated from the existing test results. The simulation results show that under blasting, the strength of wet rock is lower than that of dry rock.


2021 ◽  
Author(s):  
Luky Hendraningrat ◽  
Intan Khalida Salleh

Abstract PVT analysis of reservoir fluid samples provides essential information for determining hydrocarbon in place, depletion strategy, and hydrocarbon flowability. Hence, quality checking (QC) is necessary to ensure the best representative sample for further analysis. Recently, a novel tool based on Equation of State (EOS) was introduced to tackle the limitation of the Hoffmann method for surface samples with high impurities and heavier components. This paper presents comprehensively evaluating a novel EOS-based method using various PVT data from Malaysian fields. Numerous PVT separator samples from 30 fields with various reservoir fluids (Black Oil, Volatile, and Gas Condensate) were carried out and evaluated. The impurities contain a wide range of up to 60%. The 2-phase P-T (pressure and temperature) diagram of each oil and gas phase before recombination was calculated using PVT software based on Equation of State (EOS). The 2-phase P-T diagram was created and observed the intersection point as calculated equilibrium at separator conditions. Once it is observed and compared with written separator condition in the laboratory report and observed its deviation. Eventually, the result will be compared with the Hoffmann method. The Hoffmann method is well-known as a traditional QC method that was initially developed using gas condensate PVT data to identify possible errors in measured separator samples. If the sample has high impurities and/or heavier components, the Hoffmann method will only show a straight line to the lighter components and those impurities and heavier components will be an outlier that engineers will misinterpret that it has errors and cannot be used for further analysis such PVT characterization. The QC using EOS-based were conducted using actual fields data. It shows potential as novel QC tools but observed only less than 10% of data with complete information that can meet intersection points located precisely similar with reported in the laboratory. There is some investigation and evaluation of the EOS-based QC method. First, most of the molecular weight of the heavier fluid composition of gas and oil phase was not reported or used assumptions especially when its mole fraction is not zero. Second, properties of heavier components of the oil phase (molecular weight and specific gravity) were not measured and assumed similar as wellstream. Third, pressure and temperature data are inconsistent between the oil and gas phase at the separator condition. This study can provide improvement in laboratory measurement quality and help engineers to have a better understanding of PVT Report, essential data requirements, and assumptions used in the laboratory. Nevertheless, the Hoffmann method can be used as an inexpensive QC tool because it can be generated in a spreadsheet without a PVT software license. Both combination techniques can provide a comprehensive evaluation for separator samples with high impurities before identifying representative fluid for further analysis.


Sign in / Sign up

Export Citation Format

Share Document