Some Properties of Molten KCl at High Density Studied by MD Simulation

1981 ◽  
Vol 36 (10) ◽  
pp. 1106-1111 ◽  
Author(s):  
Ryuzo Takagi ◽  
Isao Okada ◽  
Kazutaka Kawamura

Molecular dynamics simulations of molten KCl have been performed at 1173 K with the molar volumes of 52.0 (the value under ambient pressure), 50.0, 48.0 and 45.0 cm3 mol-1 . Some thermodynamic properties at higher densities have been evaluated, which are generally in good agreement with the experimentally obtained ones and Monte Carlo results. Both at normal and higher densities, the self-exchange velocities of neighbouring unlike ions (SEV) are found to be proportional to the internal mobilities with nearly the same constant as derived previously for molten LiCl, RbCl and their 1 : 1 mixture. Calculated transport properties such as the SEV and the self-diffusion coefficients considerably decrease with increasing density, while the configuration does not change much.

2008 ◽  
Vol 139 ◽  
pp. 101-106 ◽  
Author(s):  
Byoung Min Lee ◽  
Shinji Munetoh ◽  
Teruaki Motooka ◽  
Yeo Wan Yun ◽  
Kyu Mann Lee

The structural properties of SiO2 liquid during cooling have been investigated by molecular dynamics simulations. The interatomic forces acting on the particles are calculated by the modified Tersoff potential parameters. The glass transition temperature and structural properties of the resulting SiO2 system at various temperatures have been investigated. The fivefold coordinations of Si and threefold coordinations of O atoms were observed, and the coordination defects of system decrease with decreasing temperature up to 17 % at 300 K. The self-diffusion coefficients for Si and O atoms drop to almost zero below 3000 K. The structures were distorted at high temperatures, but very stable atomic network persisted up to high temperature in the liquid state.


1980 ◽  
Vol 35 (5) ◽  
pp. 493-499 ◽  
Author(s):  
Isao Okada ◽  
Ryuzo Takagi ◽  
Kazutaka Kawamura

Abstract A new transport property, the self-exchange velocity (SEV) of neighbouring unlike ions, has been evaluated from molecular dynamics simulations of molten LiCl, RbCl and LiRbCl2 at 1100 K and the mixture at 750 K. From the increase of the SEV's in the order Rb+ (pure salt) <Li+ (mixture) < Rb+ (mixture) < Li+ (pure salt), it is conjectured that there is a strong correlation between the SEV’s and the internal mobilities. An interpretation of the Chemla effect in its dependence on temperature is given. The pair correlation functions and the self-diffusion coefficients are also calculated and discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoming Du

The self-diffusion of hydrogen in NaX zeolite has been studied by molecular-dynamics simulations for various temperatures and pressures. The results indicate that in the temperature range of 77–293 K and the pressure range of 10–2700 kPa, the self-diffusion coefficients are found to range from 1.61 × 10−9 m2·s−1to 3.66 × 10−8 m2·s−1which are in good agreement with the experimental values from the quasielastic neutron scattering (QENS) and pulse field gradients nuclear magnetic resonance (PFG NMR) measurements. The self-diffusion coefficients decrease with increasing pressure due to packing of sorbate-sorbate molecules which causes frequent collusion among hydrogen molecules in pores and increase with increasing temperature because increasing the kinetic energy of the gas molecules enlarges the mean free path of gas molecule. The activated energy for hydrogen diffusion determined from the simulation is pressure-dependent.


2004 ◽  
Vol 76 (1) ◽  
pp. 203-213 ◽  
Author(s):  
Michalis Chalaris ◽  
J. Samios

The purpose of this paper is to review our latest molecular dynamics (MD) simulation studies on the temperature and density dependence of the translational and reorientational motion in supercritical (SC) methanol. In the present treatment, Jorgensen's [W. L. Jorgensen. J. Phys. Chem. A102, 8641 (1998)] transferable potential model, tested in a recent MD study of hydrogen bonds in this fluid [M. Chalaris and J. Samios, J. Phys. Chem. B103, 1161 (1999)], was employed to simulate the dynamics of the system. The simulations were performed in the canonical (NVT) ensemble along the isotherms 523, 623, and 723 K and densities corresponding to the pressures from 10 to 30 MPa. Several dynamical properties of the fluid have been obtained and analyzed in terms of appropriate time-correlation functions (CFs). With respect to the translational dynamics, the self-diffusion coefficients obtained have been used to test the applicability of the well-known Chapman-Enskog kinetic theory. We have found that the theoretical predictions for the self-diffusion coefficients are only in qualitative agreement with the MD results over the whole temperature and density range studied. Finally, the inspection of the reorientational CFs and their corresponding correlation times lead to the conclusion that the reorientational motion of the SC methanol molecules in the sample is anisotropic.


2000 ◽  
Vol 55 (11-12) ◽  
pp. 856-860 ◽  
Author(s):  
Masahiko Matsumiya ◽  
Ryuzo Takagi

The self-exchange velocity (SEV) of neighboring unlike ions, has been evaluated by molecular dynamics simulations of molten CsCl, (Li, K)C1 and (Li, K, Cs)Cl at 673 K. From the increase of the SEV's in the same order as the internal mobilities it is conjectured that there is a strong correlation between these two properties. The pair correlation functions, and the self-diffusion coefficients and the SEV's of Li+, K+, and Cs+ with reference to Cl- have also been calculated. The results allow to conclude that the self-exchange velocity of the cations become vCs < vK < vLi at xCs =0.1 and vLi < vK < vCs at xCs > 0.4. The sequence of the self-diffusion coefficients agrees with that of the SEV's. The results enable to conclude that it is possible to enrich Cs at up to xCs ~ 0.3 - 0.4 in the molten LiCl-KCl eutectic system.


2019 ◽  
Author(s):  
Thiago José Pinheiro dos Santos ◽  
Charlles Abreu ◽  
Bruno Horta ◽  
Frederico W. Tavares

Mass transport coefficients play an important role in process design and in compositional grading of oil reservoirs. As experimental measurements of these properties can be costly and hazardous, Molecular Dynamics simulations emerge as an alternative approach. In this work, we used Molecular Dynamics to calculate the self-diffusion coefficients of methane/n-hexane mixtures at different conditions, in both liquid and supercritical phases. We evaluated how the finite box size and the choice of the force field affect the calculated properties at high pressures. Results show a strong dependency between self-diffusion and the simulation box size. The Yeh-Hummer analytical correction [J. Phys. Chem. B, 108, 15873 (2004)] can attenuate this effect, but sometimes makes the results depart from experimental data due to issues concerning the force fields. We have also found that different all-atom and united-atom models can produce biased results due to caging effects and to different dihedral configurations of the n-alkane.


2020 ◽  
Vol 6 (3) ◽  
pp. 50 ◽  
Author(s):  
Steven Best ◽  
Jake B. Wasley ◽  
Carla de Tomas ◽  
Alireza Aghajamali ◽  
Irene Suarez-Martinez ◽  
...  

Amorphous carbons are disordered carbons with densities of circa 1.9–3.1 g/cc and a mixture of sp2 and sp3 hybridization. Using molecular dynamics simulations, we simulate diffusion in amorphous carbons at different densities and temperatures to investigate the transition between amorphous carbon and the liquid state. Arrhenius plots of the self-diffusion coefficient clearly demonstrate that there is a glass transition rather than a melting point. We consider five common carbon potentials (Tersoff, REBO-II, AIREBO, ReaxFF and EDIP) and all exhibit a glass transition. Although the glass-transition temperature (Tg) is not significantly affected by density, the choice of potential can vary Tg by up to 40%. Our results suggest that amorphous carbon should be interpreted as a glass rather than a solid.


2019 ◽  
Author(s):  
Thiago José Pinheiro dos Santos ◽  
Charlles Abreu ◽  
Bruno Horta ◽  
Frederico W. Tavares

Mass transport coefficients play an important role in process design and in compositional grading of oil reservoirs. As experimental measurements of these properties can be costly and hazardous, Molecular Dynamics simulations emerge as an alternative approach. In this work, we used Molecular Dynamics to calculate the self-diffusion coefficients of methane/n-hexane mixtures at different conditions, in both liquid and supercritical phases. We evaluated how the finite box size and the choice of the force field affect the calculated properties at high pressures. Results show a strong dependency between self-diffusion and the simulation box size. The Yeh-Hummer analytical correction [J. Phys. Chem. B, 108, 15873 (2004)] can attenuate this effect, but sometimes makes the results depart from experimental data due to issues concerning the force fields. We have also found that different all-atom and united-atom models can produce biased results due to caging effects and to different dihedral configurations of the n-alkane.


Sign in / Sign up

Export Citation Format

Share Document