The Effect of Pressure on the Hydrogen Bond Structure of Liquid Water

1984 ◽  
Vol 39 (2) ◽  
pp. 179-185 ◽  
Author(s):  
G. Pálinkás ◽  
P. Bopp ◽  
G. Jancsó ◽  
K. Heinzinger

The results of molecular dynamics simulations of low and high pressure liquid water using a modified central force potential have been analyzed in order to study the effect of pressure on the hydrogen bond structure of water. The properties investigated and discussed include the hydrogen bond angle distribution, the O -O distance distribution between the neighbour molecules, the structure of the first coordination sphere in the high density liquid and the average number of hydrogen bonds.

2013 ◽  
Vol 27 (06) ◽  
pp. 1350011 ◽  
Author(s):  
QING-HAI HAO ◽  
YU-WEI YOU ◽  
XIANG-SHAN KONG ◽  
C. S. LIU

The microscopic structure and dynamics of liquid Mg x Bi 1-x(x = 0.5, 0.6, 0.7) alloys together with pure liquid Mg and Bi metals were investigated by means of ab initio molecular dynamics simulations. We present results of structure properties including pair correlation function, structural factor, bond-angle distribution function and bond order parameter, and their composition dependence. The dynamical and electronic properties have also been studied. The structure factor and pair correlation function are in agreement with the available experimental data. The calculated bond-angle distribution function and bond order parameter suggest that the stoichiometric composition Mg 3 Bi 2 exhibits a different local structure order compared with other concentrations, which help us understand the appearance of the minimum electronic conductivity at this composition observed in previous experiments.


2012 ◽  
Vol 26 (20) ◽  
pp. 1250117 ◽  
Author(s):  
L. T. VINH ◽  
N. V. HUY ◽  
P. K. HUNG

Molecular dynamics simulation is carried out for liquid SiO 2 at pressure ranged from zero to 30 GPa and by using BKS, Born–Mayer type and Morse–Stretch potentials. The constructed models reproduce well the experimental data in terms of mean coordination number, bond angle and pair radial distribution function. Furthermore, the density of all samples can be expressed by a linear function of fractions SiO x. It is found that the topology of units SiO x and linkages OSi y is unchanged upon compression although the liquid undergoes substantial change in its network structure. Consequently, the partial bond angle distribution for SiO x and OSi y is identical for all samples constructed by the same potential. This result allows to establishing a simple expression between total bond angle distribution (BAD) and fraction of SiO x and OSi y. The simulation shows a good agreement between the calculation and simulation results for both total O–Si–O and Si–O–Si BADs. This supports a technique to estimate amount of units SiO x and linkages OSi y on base of total Si–O–Si and O–Si–O BADs measured experimentally.


2014 ◽  
Vol 1035 ◽  
pp. 502-507
Author(s):  
Li An Chen

The structure and properties of the GexAsxS100-2x have been studied by ab initio molecular dynamics simulation. By calculating the pair distribution functions, bond angle distribution functions, we analyze the structure and properties of the alloys. Calculations show that Ge and As are all well combined with S atoms. When x is smaller than 25.0 the binding increases with x , when x is larger than 25.0 the binding decreases with increasing x . The intervention of As atom does not affect the GeS2 formation in Ge40As40S80


1995 ◽  
Vol 378 ◽  
Author(s):  
Eunja Kim ◽  
Young Hee Lee

AbstractWe generate liquid and amorphous Si1_xGex alloys for various Ge compositions using ab initio molecular dynamics approach. The electronic bonding characters and structural properties are discussed in terms of radial distribution function, bond angle distribution, and order parameters. Although the order parameters suggest approximately random alloy for all compositions, the snapshots reveal clearly phase separation. We will discuss how the phase can be separated in SiGe alloy system.


2020 ◽  
Vol 22 (19) ◽  
pp. 10397-10411 ◽  
Author(s):  
Hossam Elgabarty ◽  
Thomas D. Kühne

Ab initio molecular dynamics simulations of ambient liquid water and energy decomposition analysis have recently shown that water molecules exhibit significant asymmetry between the strengths of the two donor and/or the two acceptor interactions.


2020 ◽  
Vol 22 (3) ◽  
pp. 1011-1018 ◽  
Author(s):  
Piotr Zarzycki ◽  
Benjamin Gilbert

Testing the ability of molecular dynamics simulations using non-polarizable water models to reproduce dielectric spectra of bulk liquid water we show that the Debye relaxation is determined by the dynamics of the hydrogen-bond network.


Author(s):  
Eunsung Jekal

Molecular dynamics simulations were carried out to investigate the atomic structure of a model Cu64Zr36 bulk metallic glass (BMG). It is found that the amount of icosahedral content of the system is significantly increased in a well relaxed structure. While we considered four connection types of vertex-, edge-, face-, and volume-sharing, the huge cluster in the relaxed samples mainly involve volume-type connection and exhibits a remarkable athermal plasticity that great stiffness and great yield strength compared to the as-quenched samples. In addition, the bond-angle distribution of annealed sample shows sharp peaks at specific bond angles which is an evidence of crystallized Laves-phase formed by icosahedral atoms, however the peaks are to be broaden after loading, which indicates decreasing amount of icosahedral content and their shape distortion. These results suggest that icosahedral content in a bulk metallic glasses plays a key role to determine the mechanical properties such as rigidity and maximum stress carrying capacity.


Sign in / Sign up

Export Citation Format

Share Document