On Superposed Couple-stress Fluids in Porous Medium in Hydromagnetics The Use of Quantum-Chemical Semiempirical Methods to Calculate the Lattice Energies of Organic Molecular Crystals. Part II: The Lattice Energies of - and -Oxalic Acid (COOH)2

2002 ◽  
Vol 57 (12) ◽  
pp. 955-960 ◽  
Author(s):  
◽  
R. C. Sharmab ◽  
R. S. Chandel

The Rayleigh-Taylor instability of two supersposed couple-stress fluids of uniform densities in a porous medium in the presence of a uniform horizontal magnetic field is studied. For mathematical simplicity, the stability analysis is carried out for two highly viscous fluids of equal kinematic viscosity and equal couple-stress kinematic viscosity. A potentially stable configuration remains stable under certain conditions, and a potentially unstable configuration is stable under certain conditions. The magnetic field stabilizes a certain wave-number range k>k*, which is unstable in the absence of the magnetic field.

1982 ◽  
Vol 5 (2) ◽  
pp. 365-375 ◽  
Author(s):  
R. C. Sharma ◽  
K. P. Thakur

The stability of the plane interface separating two viscous superposed conducting fluids through porous medium is studied when the whole system is immersed in a uniform horizontal magnetic field. The stability analysis is carried out for two highly viscous fluids of equal kinematic viscosities, for mathematical simplicity. It is found that the stability criterion is independent of the effects of viscosity and porosity of the medium and is dependent on the orientation and magnitude of the magnetic field. The magnetic field is found to stabilize a certain wave number range of the unstable configuration. The behaviour of growth rates with respect to viscosity, porosity and medium permeability are examined analytically.


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


1997 ◽  
Vol 52 (6-7) ◽  
pp. 528-532
Author(s):  
R. C. Sharma ◽  
P. Kumar

Abstract The stability of the plane interface separating two Rivlin-Ericksen elastico-viscous superposed fluids of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscous fluids of equal kinematic viscosities and equal kinematic viscoelasticities. It is found that the stability criterion is independent of the effects of viscosity and viscoelasticity and is dependent on the orientation and magnitude of the magnetic field. The magnetic field is found to stabilize a certain wave-number range of the unstable configuration. The behaviour of growth rates with respect to kinematic viscosity and kinematic viscoelasticity parameters are examined numerically.


2015 ◽  
Vol 20 (4) ◽  
pp. 889-898
Author(s):  
M. Singh

Abstract The instability of plane interface between two superposed Rivlin-Ericksen elastico-viscous fluids saturated through a porous medium has been studied to include the suspended (dust) particles effect. Following the linearized stability theory and normal mode analysis the dispersion relation is obtained. For stationary convection, the Rivlin-Ericksen elastico-viscous fluid behaves like Newtonian fluids. It found that for a potentially stable arrangement the Rivlin-Ericksen elastico-viscous fluid of different permeabilities in the presence of suspended particles in a porous medium is stable, whereas in a potentially unstable case instability of the system occurs. In the presence of a magnetic field for a potentially stable arrangement the system is always stable and for the potentially unstable arrangement, the magnetic field succeeds in stabilizing certain wave-number band which was unstable in the absence of the magnetic field.


1992 ◽  
Vol 47 (12) ◽  
pp. 1227-1231
Author(s):  
R. C. Sharma ◽  

Abstract The Rayleigh-Taylor instability of a partially ionized plasma in a porous medium is considered in the presence of a variable magnetic field perpendicular to gravity. The cases of two uniform partially ionized plasmas separated by a horizontal boundary and exponentially varying density, viscosity, magnetic field and neutral particle number density are considered. In each case, the magnetic field succeeds in stabilizing waves in a certain wave-number range which were unstable in the absence of the magnetic field, whereas the system is found to be stable for potentially stable configuration/stable stratifications. The growth rates both increase (for certain wave numbers) and decrease (for different wave numbers) with the increase in kinematic viscosity, medium permeability and collisional frequency. The medium permeability and collisions do not have any qualitative effect on the nature of stability or instability.


1994 ◽  
Vol 49 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Kirti Prakash ◽  
Seema Manchanda

Abstract The effects of finite ion Larmor radius (FLR), collisions and Hall currents on thermosolutal instability of a partially ionized plasma in porous medium in the presence of uniform vertical magnetic field are investigated. It is found that the presence of each magnetic field, FLR, Hall currents and collisions, introduces oscillatory modes which were, otherwise, non-existent. In the case of stationary convection, finite Larmor radius, Hall currents, medium permeability and magnetic field may have stabilizing or destabilizing effects, but for a certain wave number range, FLR, magnetic field and Hall currents have a complete stabilizing effect. The stable solute gradient always has stabilizing effect on the system whereas the collisional effects disappear for the case of stationary convection.


2018 ◽  
Vol 23 (3) ◽  
pp. 611-622
Author(s):  
K.B. Chavaraddi ◽  
V.B. Awati ◽  
M.M. Nandeppanavar ◽  
P.M. Gouder

Abstract In this study we examine the effect of the magnetic field parameter on the growth rate of the Rayleigh-Taylor instability (RTI) in a couple stress fluids. A simple theory based on fully developed flow approximations is used to derive the dispersion relation for the growth rate of the RTI. The general dispersion relation obtained using perturbation equations with appropriate boundary conditions will be reduced for the special cases of propagation and the condition of instability and stability will be obtained. In solving the problem of the R-T instability the appropriate boundary conditions will be applied. The couple-stress parameter is found to be stabilizing and the influence of the various parameters involved in the problem on the interface stability is thoroughly analyzed. The new results will be obtained by plotting the curves between the dimensionless growth rate and the dimensionless wave number for various physical parameters involved in the problem (viz. the magnetic field, couple-stress, porosity, etc.) in the problem. It is found that the magnetic field and couple-stress have a stabilization effect whereas the buoyancy force (surface tension) has a destabilization effect on the RT instability in the presence of porous media.


2015 ◽  
Vol 20 (2) ◽  
pp. 407-416
Author(s):  
M. Singh ◽  
C.B. Mehta

Abstract Rayleigh-Taylor instability of two superposed Walters’ B has elastico-viscous fluids in a uniform magnetic field through a porous medium with different permeability been studied to include the suspended (dust) particles effect. Using normal mode technique a dispersion relation has been derived. The stability analysis has been carried out. The magnetic field stabilizes the unstable configuration for the wave number band K > K* in which the system is unstable in the absence of the magnetic field. It is also found that for a potential stable arrangement for Walters B’ elastico-viscous fluids of different permeabilities in the presence of suspended particles through a porous medium the system is stable, whereas in the potentially unstable case instability of the system occurs.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Rita Choudhury ◽  
Utpal Jyoti Das

The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.


Sign in / Sign up

Export Citation Format

Share Document