Local Structure of Molten CdCl2 Systems

2004 ◽  
Vol 59 (11) ◽  
pp. 819-824 ◽  
Author(s):  
Y. Okamoto ◽  
H. Shiwaku ◽  
T. Yaita ◽  
S. Suzuki ◽  
K. Minato ◽  
...  

The local structure of molten CdCl2 was investigated by X-ray absorption fine structure (XAFS) and X-ray diffraction(XRD) analyses. The nearest Cd2+-Cl− distance decreases from 2.61 Å in the room temperature solid state to 2.47 - 2.50 Å in the molten state. The coordination number decreases from 6 in the solid to 4 in the melt. The obtained structural parameters from the XAFS and the XRD analyses suggest that a tetrahedral coordination (CdCl4)2− is predominant in molten CdCl2. The XAFS result of a molten 50%CdCl2-KCl mixture shows that the 4-fold (CdCl4)2− structure holds also in the mixture

2005 ◽  
Vol 60 (1-2) ◽  
pp. 81-84
Author(s):  
Hideaki Shiwakua ◽  
Yoshihiro Okamoto ◽  
Tsuyashi Yaita ◽  
Shinichi Suzuki ◽  
Kazuo Minato ◽  
...  

The local structure of molten CdBr2 was investigated by high temperature X-ray absorption fine structure (XAFS) analysis. The quartz cell designed for hygroscopic high temperature molten salts was successfully used in the measurement. At room temperature the nearest neighbor Cd2+-Br− distance decreased from 2.71 Å in solid state to 2.60 Å in the molten state. The coordination number decreased from 6 to 4 on melting. The obtained structural parameters showed that (CdBr4)2− is predominant in molten CdBr2.


1989 ◽  
Vol 67 (11) ◽  
pp. 2023-2029 ◽  
Author(s):  
Patti J. Kellett ◽  
Oren P. Anderson ◽  
Steven H. Strauss ◽  
Kent D. Abney

An orthorhombic crystalline modification of [(PS)H+][OTeF5−] was studied by single crystal X-ray diffraction ((PS)H+ = protonated 1,8-bis(dimethylamino)naphthalene): orthorhombic, space group Cmcm, a = 8.607(2), b = 14.048(3), c = 13.365(2) Å, Z = 4, T = −130 °C. The structural parameters for the anion and cation in this modification (Mod-B) are very similar to those for the previously reported triclinic modification of this salt (Mod-A). However, variable temperature IR spectra for Mod-B suggest that the OTeF5− anion is exhibiting a two-site O/Fax interchange above −70 °C. Solid-state 19F NMR spectra suggest that this interchange may be as rapid as 104–105 s−1 at room temperature. Keywords: crystal structure of protonated 1,8-bis(dimethylamino)naphthalene)pentafluorotellurate(VI), polymorphism, solid state 19FNMR.


2004 ◽  
Vol 84 (4) ◽  
pp. 481-483 ◽  
Author(s):  
Y. L. Soo ◽  
S. Kim ◽  
Y. H. Kao ◽  
A. J. Blattner ◽  
B. W. Wessels ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1315
Author(s):  
Takafumi Miyanaga

X-ray absorption fine structure (XAFS) is a powerful technique used to analyze a local electronic structure, local atomic structure, and structural dynamics. In this review, I present examples of XAFS that apply to the local structure and dynamics of functional materials: (1) structure phase transition in perovskite PbTiO3 and magnetic FeRhPd alloys; (2) nano-scaled fluctuations related to their magnetic properties in Ni–Mn alloys and Fe/Cr thin films; and (3) the Debye–Waller factors related to the chemical reactivity for catalysis in polyanions and ligand exchange reaction. This study shows that the local structure and dynamics are related to the characteristic function of the materials.


2010 ◽  
Vol 43 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Leandro M. Acuña ◽  
Diego G. Lamas ◽  
Rodolfo O. Fuentes ◽  
Ismael O. Fábregas ◽  
Márcia C. A. Fantini ◽  
...  

The local atomic structures around the Zr atom of pure (undoped) ZrO2nanopowders with different average crystallite sizes, ranging from 7 to 40 nm, have been investigated. The nanopowders were synthesized by different wet-chemical routes, but all exhibit the high-temperature tetragonal phase stabilized at room temperature, as established by synchrotron radiation X-ray diffraction. The extended X-ray absorption fine structure (EXAFS) technique was applied to analyze the local structure around the Zr atoms. Several authors have studied this system using the EXAFS technique without obtaining a good agreement between crystallographic and EXAFS data. In this work, it is shown that the local structure of ZrO2nanopowders can be described by a model consisting of two oxygen subshells (4 + 4 atoms) with different Zr—O distances, in agreement with those independently determined by X-ray diffraction. However, the EXAFS study shows that the second oxygen subshell exhibits a Debye–Waller (DW) parameter much higher than that of the first oxygen subshell, a result that cannot be explained by the crystallographic model accepted for the tetragonal phase of zirconia-based materials. However, as proposed by other authors, the difference in the DW parameters between the two oxygen subshells around the Zr atoms can be explained by the existence of oxygen displacements perpendicular to thezdirection; these mainly affect the second oxygen subshell because of the directional character of the EXAFS DW parameter, in contradiction to the crystallographic value. It is also established that this model is similar to another model having three oxygen subshells, with a 4 + 2 + 2 distribution of atoms, with only one DW parameter for all oxygen subshells. Both models are in good agreement with the crystal structure determined by X-ray diffraction experiments.


2003 ◽  
Vol 798 ◽  
Author(s):  
V. Katchkanov ◽  
J. F. W. Mosselmans ◽  
S. Dalmasso ◽  
K. P. O'Donnell ◽  
R. W. Martin ◽  
...  

ABSTRACTThe local structure around Er and Eu atoms introduced into GaN epilayers was studied by means of Extended X-ray Absorption Fine Structure above the appropriate rare-earth X-ray absorption edge. The samples were doped in situ during growth by Molecular Beam Epitaxy. The formation of ErN clusters was found in samples with high average Er concentrations of 32±6% and 12.4±0.8%, estimated by Wavelength Dispersive X-ray analysis. When the average Er concentration is decreased to 6.0±0.2%, 1.6±0.2% and 0.17±0.02%, Er is found in localised clusters of ErGaN phase with high local Er content. Similar behaviour is observed for Eu-doped samples. For an average Eu concentration of 30.5±0.5% clusters of pure EuN occur. Decreasing the Eu concentration to 10.4±0.5% leads to EuGaN clusters with high local Eu content. However, for a sample with an Eu concentration of 14.2±0.5% clustering of Eu was not observed.


2005 ◽  
Vol 54 (12) ◽  
pp. 5837
Author(s):  
Wu Tai-Quan ◽  
Tang Jing-Chang ◽  
Zhu Ping ◽  
Li Hai-Yang

Sign in / Sign up

Export Citation Format

Share Document