scholarly journals Study of Self Assembly Systems Formed by Malic Acid and Alkyloxy Benzoic Acids

2010 ◽  
Vol 65 (12) ◽  
pp. 1156-1164 ◽  
Author(s):  
Vellalapalayam Nallagounder Vijayakumar ◽  
Mathukumalli Lakshmi Narayana Madhu Mohan

Self assembly systems formed by malic acid and alkyloxy benzoic acids are characterized. The ferroelectric ingredient malic acid formed double hydrogen bond with p-n-alkyloxy benzoic acids. Various hydrogen bonded complexes have been synthesized with malic acid and pentyl to dodecyloxy benzoic acid, respectively. Fourier transformation infrared (FTIR) studies confirm the hydrogen bond formation. Polarizing optical microscopic (POM) studies revealed the textural information while the transition and enthalpy values are calculated from differential scanning calorimetry (DSC) studies. A phase diagram has been constructed from the POMand DSC studies. A new smectic ordering, smectic X*, has been identified which exhibits a finger print type texture. This phase has been characterized by POM, DSC, helix, and tilt angle studies. The transition from traditional cholesteric to smectic X* phase is observed to be first order. The tilt angle data in this phase has been fitted to a power law and the temperature variation of the tilt angle follows mean field theory predictions. The results of FTIR, POM, DSC, tilt angle, and helicoidal studies are discussed.

2020 ◽  
Vol 19 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Hiba H. Ali ◽  
Mowafaq M. Ghareeb ◽  
Mayyas Al-Remawi ◽  
Faisal T. Al-Akayleh

Purpose: To examine the structural changes of a eutectic mixture comprising capric acid and menthol which are commonly used in pharmaceutical applications. Methods: A phase diagram was constructed by quantitative mixing of capric acid and menthol under controlled conditions until a single liquid phase was formed. Eutectic mixtures of capric acid: menthol at the ratios of 3:2, 1:4, 1:1, 2:3, and 1:4 were prepared. Hydrogen bond formation and conformational changes were analyzed using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Microscopic imaging was carried out to capture phase change events upon increasing temperature. Results: Menthol confirmed the intact structure of a hexagonal ring. The high degree of broadening of the menthol O-H groups indicates hydrogen bond formation. FTIR band changes related to capric acid suggest a break-up of the methylene arrangement structure due to changes in the C-H band frequencies. The red shift encountered in C=O stretching band emphasizes hydrogen bond formation taking place between the oxygen atom of the hydroxyl group comprising the carboxylic moiety of capric acid and the hydrogen atom of menthol hydroxyl group. DSC results indicate the presence of two polymorphs of the capric acid/ menthol complex. Both exhibited crystallization and conformational change exotherms in addition to two melting endotherms as result of transformation of crystalline components to become partially crystalline due to hydrogen bond formation. Conclusion: The interaction between capric acid and menthol results in a typical preparation of deep eutectic systems that can act as natural-based solvents in numerous pharmaceutical applications. Keywords: Eutectic system, Capric acid, Menthol, Differential scanning calorimetry, DSC, Fourier transform infrared spectroscopy, FTIR


RSC Advances ◽  
2014 ◽  
Vol 4 (69) ◽  
pp. 36882-36889 ◽  
Author(s):  
Taoran Zhang ◽  
Cheng Jin ◽  
Lingyu Wang ◽  
Qinjian Yin

We introduce a facile and novel way that describes the random amphiphilic azo copolymer to construct hollow nanospheres via hydrogen bond formation.


1999 ◽  
Vol 64 (10) ◽  
pp. 1617-1628 ◽  
Author(s):  
Oldřich Pytela ◽  
Ondřej Prusek

Three model compounds have been selected to study the relationship between ortho and para substitution: benzoic acid, phenol, and aniline. Sixteen substituents have been chosen involving also those capable of potential interaction between ortho substituent and the reaction centre. For the combinations given, literature presents 25 pairs of data obtained by measuring a particular process for both the ortho and para substituted derivatives. The missing dissociation constants of 16 ortho substituted benzoic acids in water and ethanol and 16 para substituted benzoic acids in dimethyl sulfoxide and pyridine have been measured by potentiometric titration. The data matrices were submitted to analysis by the methods of projection of latent structures (PLS) and principal component analysis (PCA). It has been found that the substituent effects from ortho and para positions have the same character unless the ortho substituents interact with the reaction centre. Such interactions can change the experimentally found value by as much as 20% of its magnitude. The most significant interaction is a hydrogen bond formation. Out of the three models studied the most extensive interactions are present in benzoic acid, whereas almost none were observed in aniline. The capability of donation of electron pair to a hydrogen bond decreases in the substituent series COCH3 > SO2CH3 > NO2. The capability of donation of proton to a hydrogen bond with electron-pair donor decreases in the substituent series OH > NHCOCH3 ≈ SH > NH2 > SO2NH2.


2011 ◽  
Vol 406 (5) ◽  
pp. 1106-1113 ◽  
Author(s):  
N. Pongali Sathya Prabu ◽  
V.N. Vijayakumar ◽  
M.L.N. Madhu Mohan

2002 ◽  
Vol 724 ◽  
Author(s):  
Elizabeth R. Wright ◽  
R. Andrew McMillan ◽  
Alan Cooper ◽  
Robert P. Apkarian ◽  
Vincent P. Conticello

AbstractTriblock copolymers have traditionally been synthesized with conventional organic components. However, triblock copolymers could be synthesized by the incorporation of two incompatible protein-based polymers. The polypeptides would differ in their hydrophobicity and confer unique physiochemical properties to the resultant materials. One protein-based polymer, based on a sequence of native elastin, that has been utilized in the synthesis of biomaterials is poly (Valine-Proline-Glycine-ValineGlycine) or poly(VPGVG) [1]. This polypeptide has been shown to have an inverse temperature transition that can be adjusted by non-conservative amino acid substitutions in the fourth position [2]. By combining polypeptide blocks with different inverse temperature transition values due to hydrophobicity differences, we expect to produce amphiphilic polypeptides capable of self-assembly into hydrogels. Our research examines the design, synthesis and characterization of elastin-mimetic block copolymers as functional biomaterials. The methods that are used for the characterization include variable temperature 1D and 2D High-Resolution-NMR, cryo-High Resolutions Scanning Electron Microscopy and Differential Scanning Calorimetry.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4705
Author(s):  
Boer Liu ◽  
Xi Chen ◽  
Glenn A. Spiering ◽  
Robert B. Moore ◽  
Timothy E. Long

This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths.


2020 ◽  
Vol 8 (42) ◽  
pp. 14939-14947
Author(s):  
So Yokomori ◽  
Shun Dekura ◽  
Tomoko Fujino ◽  
Mitsuaki Kawamura ◽  
Taisuke Ozaki ◽  
...  

A novel vapochromic mechanism by intermolecular electron transfer coupled with hydrogen-bond formation was realized in a zinc dithiolene complex crystal.


Sign in / Sign up

Export Citation Format

Share Document