Shock Wave Kinematics in a Relaxing Gas with Dust Particles

2019 ◽  
Vol 74 (9) ◽  
pp. 787-798 ◽  
Author(s):  
Sonu Mehla ◽  
J. Jena

AbstractIn this article, we considered the evolutionary behaviour of one-dimensional shock waves propagating through a relaxing gas with dust particles in a duct with spatially varying cross section. We adopted the procedure based on the kinematics of a one-dimensional motion to derive an infinite hierarchy of transport equations, which describe the evolutionary behaviour of shock of arbitrary strength propagating through the medium. The first three truncation approximations are considered, and the results are compared with existing results in the absence of relaxation and dust particles. The effects of dust particles and relaxation are studied using numerical computations. The results are depicted for different values of dust and relaxation parameters.

2021 ◽  
Vol 76 (5) ◽  
pp. 417-425
Author(s):  
Astha Chauhan ◽  
Kajal Sharma

Abstract A system of partial differential equations describing the one-dimensional motion of an inviscid self-gravitating and spherical symmetric dusty gas cloud, is considered. Using the method of the kinematics of one-dimensional motion of shock waves, the evolution equation for the spherical shock wave of arbitrary strength in interstellar dusty gas clouds is derived. By applying first order truncation approximation procedure, an efficient system of ordinary differential equations describing shock propagation, which can be regarded as a good approximation of infinite hierarchy of the system. The truncated equations, which describe the shock strength and the induced discontinuity, are used to analyze the behavior of the shock wave of arbitrary strength in a medium of dusty gas. The results are obtained for the exponents from the successive approximation and compared with the results obtained by Guderley’s exact similarity solution and characteristic rule (CCW approximation). The effects of the parameters of the dusty gas and cooling-heating function on the shock strength are depicted graphically.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Swati Chauhan ◽  
Antim Chauhan ◽  
Rajan Arora

Abstract In this work, we consider the system of partial differential equations describing one-dimensional (1D) radially symmetric (i.e., cylindrical or spherical) flow of a nonideal gas with small solid dust particles. We analyze the implosion of cylindrical and spherical symmetric strong shock waves in a mixture of a nonideal gas with small solid dust particles. An evolution equation for the strong cylindrical and spherical shock waves is derived by using the Maslov technique based on the kinematics of 1D motion. The approximate value of the similarity exponent describing the behavior of strong shocks is calculated by applying a first-order truncation approximation. The obtained approximate values of similarity exponent are compared with the values of the similarity exponent obtained from Whitham’s rule and Guderley’s method. All the above computations are performed for the different values of mass fraction of dust particles, relative specific heat, and the ratio of the density of dust particle to the density of the mixture and van der Waals excluded volume.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Dong Yan ◽  
Jinchang Zhao ◽  
Shaoqing Niu

Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage) on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage) leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.


1976 ◽  
Vol 76 (1) ◽  
pp. 157-176 ◽  
Author(s):  
A. M. Abd–El–Fattah ◽  
L. F. Henderson ◽  
A. Lozzi

This paper presents experimental data obtained for the refraction of a plane shock wave at a carbon dioxide–helium interface. The gases were separated initially by a delicate polymer membrane. Both regular and irregular wave systems were studied, and a feature of the latter system was the appearance of bound and free precursor shocks. Agreement between theory and experiment is good for regular systems, but for irregular ones it is sometimes necessary to take into account the effect of the membrane inertia to obtain good agreement. The basis for the analysis of irregular systems is one-dimensional piston theory and Snell's law.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Pooja Gupta ◽  
Rahul Kumar Chaturvedi ◽  
L. P. Singh

AbstractThe present study uses the theory of weakly nonlinear geometrical acoustics to derive the high-frequency small amplitude asymptotic solution of the one-dimensional quasilinear hyperbolic system of partial differential equations characterizing compressible, unsteady flow with generalized geometry in ideal gas flow with dust particles. The method of multiple time scales is applied to derive the transport equations for the amplitude of resonantly interacting high-frequency waves in a dusty gas. These transport equations are used for the qualitative analysis of nonlinear wave interaction process and self-interaction of nonlinear waves which exist in the system under study. Further, the evolutionary behavior of weak shock waves propagating in ideal gas flow with dust particles is examined here. The progressive wave nature of nonresonant waves terminating into the shock wave and its location is also studied. Further, we analyze the effect of the small solid particles on the propagation of shock wave.


2005 ◽  
Vol 13 ◽  
pp. 525-527 ◽  
Author(s):  
Taishi Nakamoto ◽  
Hitoshi Miura

AbstractCrystalline silicate dust particles have been found in some comets, though progenitors of those dust particles are thought to be amorphous. Here, the origin of the crystalline particles was investigated based on the shock-wave heating mechanism. We find that appropriate shock waves can crystallize amorphous dust particles and conditions of these shock waves (shock velocity and pre-shock gas density) are clarified.The gas density in the solar nebula and the shock velocity that may be induced in comet forming regions by some mechanisms were discussed. It was suggested that comets formed in a region closer than about 20 AU to the Sun can contain the crystalline particles, whereas comets formed in a further region can hardly have them.


2018 ◽  
Vol 17 (4-5) ◽  
pp. 502-520
Author(s):  
Roy S Baty ◽  
Len G Margolin

This article applies nonstandard analysis to study the generalized solutions of entropy and energy across one-dimensional shock waves in a compressible, inviscid, perfect gas. Nonstandard analysis is an area of modern mathematics that studies number systems that contain both infinitely large and infinitely small numbers. For an inviscid shock wave, it is assumed that the shock thickness occurs on an infinitesimal interval and that the jump functions for the field variables are smoothly defined on this interval. A weak converse to the existence of the entropy peak is derived and discussed. Generalized solutions of the Euler equations for entropy and energy are then derived for both theoretical and realistic normalized velocity profiles.


Author(s):  
O Igra ◽  
L Wang ◽  
J Falcovitz

A comparative study of the interaction of shock wave or rarefaction wave with a converging duct separating long constant cross-section segments is presented. Quasi-one-dimensional computations are compared with fully two-dimensional computations. It is observed that in some cases the two-dimensional results approach the respective one-dimensional approximations over long times, while in other cases the two-dimensional computed flow is genuinely two-dimensional and cannot be reduced to a one-dimensional equivalent. In the latter cases, significant errors are incurred by analysing the flow using the quasi-one- dimensional duct flow approximation.


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Maxim Olshanii ◽  
Dumesle Deshommes ◽  
Jordi Torrents ◽  
Marina Gonchenko ◽  
Vanja Dunjko ◽  
...  

The recently proposed map [5] between the hydrodynamic equations governing the two-dimensional triangular cold-bosonic breathers [1] and the high-density zero-temperature triangular free-fermionic clouds, both trapped harmonically, perfectly explains the former phenomenon but leaves uninterpreted the nature of the initial (t=0) singularity. This singularity is a density discontinuity that leads, in the bosonic case, to an infinite force at the cloud edge. The map itself becomes invalid at times t<0t<0. A similar singularity appears at t = T/4t=T/4, where T is the period of the harmonic trap, with the Fermi-Bose map becoming invalid at t > T/4t>T/4. Here, we first map—using the scale invariance of the problem—the trapped motion to an untrapped one. Then we show that in the new representation, the solution [5] becomes, along a ray in the direction normal to one of the three edges of the initial cloud, a freely propagating one-dimensional shock wave of a class proposed by Damski in [7]. There, for a broad class of initial conditions, the one-dimensional hydrodynamic equations can be mapped to the inviscid Burgers’ equation, which is equivalent to a nonlinear transport equation. More specifically, under the Damski map, the t=0 singularity of the original problem becomes, verbatim, the initial condition for the wave catastrophe solution found by Chandrasekhar in 1943 [9]. At t=T/8t=T/8, our interpretation ceases to exist: at this instance, all three effectively one-dimensional shock waves emanating from each of the three sides of the initial triangle collide at the origin, and the 2D-1D correspondence between the solution of [5] and the Damski-Chandrasekhar shock wave becomes invalid.


1971 ◽  
Vol 46 (1) ◽  
pp. 111-128 ◽  
Author(s):  
Naruyoshi Asano

Sound waves of finite but small amplitude propagating into a quasi-steady, supersonic flow in a non-uniform duct are analyzed by means of a perturbation method. General properties of the flow and of the wave propagation are studied using a one-dimensional approximation. A shock propagation law in the unsteady flow is obtained. As an example, the formation and development of shock waves are discussed for a duct with a conical convergence. Comparisons of the theory with an experiment are also made; fairly good agreement is found.


Sign in / Sign up

Export Citation Format

Share Document