Die Stärke von optokinetischen Reaktionen auf verschiedene Mustergeschwindigkeiten

1958 ◽  
Vol 13 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Bernhard Hassenstein

The strength of optokinetic reactions in the beetle Chlorophanus has been measured in relation to the angular velocity of a moving irregular stripe pattern (Fig. 2). The stimulus situation was so arranged that only one type of elementary perception mechanism was involved. As shown in Fig. 4 the reactions followed very well REICHARDT'S theoretical curve (5, Fig. 9), which was calculated from experiments on the interaction between single successive light stimuli in the eye (cf. the CNS) of Chlorophanus. Mathematical evaluation of the experimental facts shows that the two types (E and D 3, 5) of transmitting elements involved possess linear first order kinetics of reaction. The time constants of the E- and D-Elements proved to have the value of 3,5 sec and 46 msec, making a quotient of 76,24. These figures determine a nearly logarithmic relation between angular velocity and strength of reaction within the range from 2°/sec to 40°/sec, a maximum of reaction near 50°/sec and a logarithmic decrease from 100°/sec to 2000°/sec (see Fig. 4). - The experimental results confirmed, that the movement perception of the beetle Chlorophanus works in accordance with the principle of autocorrelation.

Author(s):  
Dayo Felix Latona ◽  
Adewumi Oluwasogo Dada

The reaction was studied via pseudo-first-order kinetics using a UV-1800 Shimadzu spectrophotometer with a thermostated cell compartment and interfaced with a computer. The reaction showed first order with respect to malachite green and sugar and hydroxyl ion concentrations. However, the reaction was independent of ionic strength and showed no dependence on the salt effect, indicating an inner sphere mechanism for the reaction. There was no polymerization of the reaction mixture with acrylonitrile, indicating the absence of radicals in the course of the reaction. Michaelis-Menten plot indicated the presence of a reaction intermediate in the rate-determining step. The activation parameters of the reaction have been calculated and products were elucidated by FTIR spectroscopy. The stoichiometry of the reaction is 1:1. A mechanism consistent with the above facts has been suggested.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka-Rycerz ◽  
Rafał Pietraś ◽  
Izabela Kozak ◽  
Karolina Lejwoda ◽  
...  

A comparative study of chemical stability of terfenadine (TER) and itsin vivometabolite fexofenadine (FEX) was performed. Both TER and FEX were subjected to high temperature at different pH and UV/VIS light at different pH and then quantitatively analyzed using new validated LC-UV methods. These methods were used to monitor the degradation processes and to determine the kinetics of degradation for both the compounds. As far as the effects of temperature and pH were concerned, FEX occurred more sensitive to degradation than TER. As far as the effects of UV/VIS light and pH were concerned, the both drugs were similarly sensitive to high doses of light. Using all stress conditions, the processes of degradation of TER and FEX followed the first-order kinetics. The results obtained for these two antihistaminic drugs could be helpful in developing their new derivatives with higher activity and stability at the same time.


2012 ◽  
Vol 581-582 ◽  
pp. 694-697
Author(s):  
Yong Yao ◽  
De Li Luo ◽  
Zhi Yong Huang ◽  
Jiang Feng Song

In order to evaluate the feasibility of tritium recovery from tritiated water by thermochemical decomposition using ZrNi5, the kinetics of reaction between ZrNi5 and water vapor was studied by thermogravimetric method in the temperature range from 673K to 823K. The result shows that reaction rate increased significantly with the increasing of temperature and H2O concentration; the reaction mechanism for ZrNi5 can be described by the first-order chemical reaction, and the reaction is first order for H2O concentration. The reaction activation energy of ZrNi5 is 55.8kJ/mol calculated from the Arrhenius equation.


1992 ◽  
Vol 73 (5) ◽  
pp. 1939-1945 ◽  
Author(s):  
E. M. Postlethwait ◽  
S. D. Langford ◽  
A. Bidani

We previously showed, during quasi-steady-state exposures, that the rate of inhaled NO2 uptake displays reaction-mediated characteristics (J. Appl. Physiol. 68: 594–603, 1990). In vitro kinetic studies of pulmonary epithelial lining fluid (ELF) demonstrated that NO2 interfacial transfer into ELF exhibits first-order kinetics with respect to NO2, attains [NO2]-dependent rate saturation, and is aqueous substrate dependent (J. Appl. Physiol. 71: 1502–1510, 1991). We have extended these observations by evaluating the kinetics of NO2 gas phase disappearance in isolated ventilating rat lungs. Transient exposures (2–3/lung at 25 degrees C) employed rebreathing (NO2-air) from a non-compliant continuously stirred closed chamber. We observed that 1) NO2 uptake rate is independent of exposure period, 2) NO2 gas phase disappearance exhibited first-order kinetics [initial rate (r*) saturation occurred when [NO2] > 11 ppm], 3) the mean effective rate constant (k*) for NO2 gas phase disappearance ([NO2] < or = 11 ppm, tidal volume = 2.3 ml, functional residual capacity = 4 ml, ventilation frequency = 50/min) was 83 +/- 5 ml/min, 4) with [NO2] < or = 11 ppm, k* and r* were proportional to tidal volume, and 5) NO2 fractional uptakes were constant across [NO2] (< or = 11 ppm) and tidal volumes but exceeded quasi-steady-state observations. Preliminary data indicate that this divergence may be related to the inspired PCO2. These results suggest that NO2 reactive uptake within rebreathing isolated lungs follows first-order kinetics and displays initial rate saturation, similar to isolated ELF.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 58 (8) ◽  
pp. 787-794 ◽  
Author(s):  
B.Thimme Gowda ◽  
K. L. Jayalakshmi ◽  
K. Jyothi

In an effort to introduce N,N-dichloroarylsulphonamides of different oxidising strengths, four mono- and five di-substituted N,N-dichlorobenzenesulphonamides are prepared, characterised and employed as oxidants for studying the kinetics of oxidation of dimethyl sulphoxide (DMSO) in 50% aqueous acetic acid. The reactions show first order kinetics in [oxidant], fractional to first order in [DMSO] and nearly zero order in [H+]. Increase in ionic strength of the medium slightly increases the rates, while decrease in dielectric constant of the medium decreases the rates. The results along with those of the oxidation of DMSO by N,N-dichlorobenzenesulphonamide and N,N-dichloro-4- methylbenzenesulphonamide have been analysed. Effective oxidising species of the oxidants employed in the present oxidations is Cl+ in different forms, released from the oxidants. Therefore the introduction of different substituent groups into the benzene ring of the oxidant is expected to affect the ability of the reagent to release Cl+ and hence its capacity to oxidise the substrate. Significant changes in the kinetic and thermodynamic data are observed in the present investigations with change of substituent in the benzene ring. The electron releasing groups such as CH3 inhibit the ease with which Cl+ is released from the oxidant, while electron-withdrawing groups such as Cl enhance this ability. The Hammett equation, log kobs = −3.19 + 1.05 σ , is found to be valid for oxidations by all the p-substituted N,N-dichlorobenzenesulphonamides. The substituent effect on the energy of activation, Ea and log A for the oxidations is also analysed. The enthalpies and free energies of activation correlate with an isokinetic temperature of 320 K.


2008 ◽  
Vol 6 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Lyudmila Belyakova ◽  
Oleksandra Shvets ◽  
Diana Lyashenko

AbstractThe present work investigates the adsorptive interactions of Hg(II) ions in aqueous medium with hydroxylated silica, aminopropylsilica and silica chemically modified by β-cyclodextrin. Batch adsorption studies were carried out with various agitation times and mercury(II) concentrations. The maximum adsorption was observed within 15–30 min of agitation. The kinetics of the interactions, tested with the model of Lagergren for pseudo-first and pseudo-second order equations, showed better agreement with first order kinetics (k1 = 3.4 ± 0.2 to 5.9 ± 0.3 min−1). The adsorption data gave good fits with Langmuir isotherms. The results have shown that β-cyclodextrin-containing adsorbent has the largest adsorption specificity to Hg(II): K L = 4125 ± 205 mmol−1. “β-cyclodextrin-NO3-” inclusion complexes with ratio 1: 1 and super molecules with composition C42H70O35 ⊎ 3 Hg(NO3)2 are formed on the surface of β-cyclodextrin-containing silica.


1977 ◽  
Vol 55 (10) ◽  
pp. 1762-1769 ◽  
Author(s):  
Meindert Booy ◽  
Thomas Wilson Swaddle

Aqueous H3NTA, H2MIDA, H2IDA, and their anions decompose under hydrothermal conditions (400–580 K) according to first order kinetics by successive decarboxylations, oxidation by O2 being unimportant except at the highest temperatures. In the presence of added H+, the species H4NTA+ and, to a lesser extent, H3MIDA+ (but not H3IDA+), provide significant decomposition pathways through elimination of a —CH2COO— group (deacetylation). For HnNTA(3−n)−, first order rate coefficients kn for decomposition are k0 = 4.5 × 10−7, k1 ∼ 1 × 10−6, k2 ∼ 7 × 10−5, k3 = 2.1 × 10−4, and k4 = 1.0 × 10−2 s1, at 503 K and ionic strength 2.0 m, the spread in rates being due to differences in ΔS* rather than ΔH*. H2MIDA and H2IDA are comparable in reactivity to H3NTA, while their anions are much less reactive than the NTA species of the same charge. The good thermal stability of aqueous NTA commends it as a reagent for boiler servicing and for decontamination of water-cooled nuclear reactors. A potentiometric method for the estimation of mono-, di-, and tribasic aminoacids in aqueous mixtures of these is described.


2004 ◽  
Vol 82 (9) ◽  
pp. 1372-1380 ◽  
Author(s):  
Sairabanu A Farokhi ◽  
Sharanappa T Nandibewoor

The kinetics of the oxidation of benzilic acid by potassium permanganate in an acidic medium were studied spectrophotometrically. The reaction followed a two-stage process, wherein both stages of the reaction followed first-order kinetics with respect to permanganate ion and benzilic acid. The rate of the reaction increased with an increase in acid concentration. Autocatalysis was observed by one of the products, i.e., manganese(II). A composite mechanism involving autocatalysis has been proposed. The activation parameters of the reaction were calculated and discussed and the reaction constants involved in the mechanisms were calculated. There is a good agreement between the observed and calculated rate constants under different experimental conditions.Key words: oxidation, autocatalysis, benzilic acid, two-stage kinetics.


Sign in / Sign up

Export Citation Format

Share Document