Zur Beziehung zwischen Phasenlage und Spontanfrequenz bei der endogenen Tagesperiodik

1963 ◽  
Vol 18 (2) ◽  
pp. 154-157 ◽  
Author(s):  
Klaus Hoffmann

The mechanism underlying the endogenous diurnal periodicity of biological processes can be considered a self-sustained oscillation, which can be entrained to an external cycle. In such oscillations the phase-angle of the entrained cycle depends upon the spontaneous frequency (free-running period) of the oscillator.The activity rhythm of lizards kept in constant light, and in a sinusoidal 24-hour temperature cycle, showed entrainment to this cycle. The phase of the entrained rhythm depended on the spontaneous frequency which was expressed in constant conditions occurring immediately before or after the exposure to the extraneous cycle. This is the first experimental demonstration showing the dependence of phase on the free-running period in an endogenous diurnal rhythm.

1981 ◽  
Vol 241 (1) ◽  
pp. R62-R66 ◽  
Author(s):  
H. E. Albers

The circadian wheel-running rhythms of gonadectomized adult male, female, and perinatally androgenized female rats, maintained in constant darkness, were examined before and after implantation of Silastic capsules containing cholesterol (C) or estradiol-17 beta (E). The free-running period of the activity rhythm (tau) before capsule implantation tended to be shorter in animals exposed to perinatal androgen. Administration of C did not reliably alter tau in any group. E significantly shortened tau in 100% of females injected with oil on day 3 of life. In females, injected with 3.5 micrograms testosterone propionate on day 3, and males, E shortened or lengthened tau, with the direction and magnitude of this change in tau inversely related to the length of the individual's pretreatment tau. These data indicate that the presence of perinatal androgen does not eliminate the sensitivity of the circadian system of the rat to estrogen, since estrogen alters tau in a manner that depends on its pretreatment length.


1992 ◽  
Vol 263 (5) ◽  
pp. R1099-R1103 ◽  
Author(s):  
P. C. Zee ◽  
R. S. Rosenberg ◽  
F. W. Turek

The phase angle of entrainment of the circadian rhythm of the locomotor activity rhythm to a light-dark (LD) cycle was examined in young (2-5 mo old) and middle-aged (13-16 mo old) hamsters. An age-related phase advance in the onset of locomotor activity relative to lights off was seen during stable entrainment to a 14:10-h LD cycle. In addition, the effects of age on the rate of reentrainment of the circadian rhythm of locomotor activity were examined by subjecting young and middle-aged hamsters to either an 8-h advance or delay shift of the LD cycle. Middle-aged hamsters resynchronized more rapidly after a phase advance of the LD cycle than did young hamsters, whereas young hamsters were able to phase delay more rapidly than middle-aged hamsters. The age-related phase advance of activity onset under entrained conditions, and the alteration of responses in middle-aged hamsters reentraining to a phase-shifted LD cycle, may be due to the shortening of the free-running period of the circadian rhythm of locomotor activity with advancing age that has previously been observed in this species.


Author(s):  
Walter F. Holmström ◽  
Elfed Morgan

The endogenous activity rhythm of the estuarine amphipod Corophium volutator has been studied by direct observation and with the use of time lapse photography. The rhythm persists under constant conditions having a free running period of between 12 and 13 h, and with activity maxima occurring during the early ebb. Freshly collected animals show a rhythm which is modulated on a semi-lunar basis, the activity maxima being attenuated during the neap tide periods, and the rhythm has also been found to vary in definition throughout the year. The activity pattern is most clearly denned in early summer and autumn, the population becoming arrhythmic during the winter months. The rhythm is relatively unaffected by the ambient light intensity and temperature of the recording conditions, and is evident in all post-natal stages of development. The possibility of mutual entrainment is discussed.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1077-1090 ◽  
Author(s):  
L M Newby ◽  
F R Jackson

Abstract To identify components of a circadian pacemaker output pathway, we have sought Drosophila mutations that alter the timing of eclosion but do not perturb circadian period or the expression of the activity rhythm. A mutant named lark has been identified, for which daily peaks of eclosion occur abnormally early while populations are synchronized to either light/dark or temperature cycles. The temporal phasing of locomotor activity in lark mutants, however, is entirely normal, as is the free-running period of the circadian pacemaker. The lark strain carries a single P-element insertion which, interestingly, has a dominant effect on the timing of eclosion, but is also associated with a recessive embryonic lethal phenotype. The analysis of excision-generated alleles suggests that the lark gene encodes an essential function. This function is apparently mediated by a transcription unit that is interrupted by the P-induced lark mutation. A combination of in situ hybridization analysis and reporter (beta-gal) staining indicates that this transcription unit expresses mRNAs throughout the embryonic central nervous system and in a defined subset of cells in the nervous system of pharate adults. RNAs are first detected at about embryonic stage 11, just prior to the stage at which lethality occurs in lark homozygotes. Based primarily on the observed mutant phenotypes, a function is proposed for the LARK product(s) that is consistent with the pleiotropic nature of lark mutations.


1982 ◽  
Vol 242 (3) ◽  
pp. R261-R264 ◽  
Author(s):  
P. W. Cheung ◽  
C. E. McCormack

These experiments were undertaken to determine if the pineal gland is involved in the physiological mechanism by which the rat alters its free-running period (tau) in response to changes in illuminance. Spontaneous wheel-running activity was recorded from pinealectomized or sham-operated female Charles River rats. The tau of running activity was determined in continuous darkness (DD) or in continuous dim light (LL). Pinealectomized rats and sham-operated rats lengthened their tau's to approximately the same extent when shifted from DD to LL and shortened their tau's when shifted back to DD. Continuous melatonin administration via Silastic capsules failed to alter tau of rats kept in dim LL. These results indicate that the pineal is not primarily involved in the mechanism by which the rat alters tau in response to changes in illuminance.


Author(s):  
S. J. Northcott ◽  
R. N. Gibson ◽  
E. Morgan

In constant conditions, freshly-collected Lipophrys pholis show an endogenous circatidal activity rhythm, the initial activity peaks of which are phased to the expected time of high tide. The rhythm usually damps out over a few days but it may re-appear spontaneously or as a result of disturbance caused by handling and transfer to the experimental apparatus. The free-running period is more variable in fish kept in non-tidal conditions for prolonged periods than in those recorded shortly after capture. The non-circatidal periodicity shown by some fish may be the result of stable coupling in antiphase of desynchronised oscillators. There is no semilunar variation of the circatidal rhythm and no influence of the slight diurnal inequality in tidal period upon the rhythm's periodicity, at least at the site studied. The activity rhythm of Lipophrys varies seasonally.


Sign in / Sign up

Export Citation Format

Share Document