The Photometabolism of glucose in Chlorella

1963 ◽  
Vol 18 (9) ◽  
pp. 701-706 ◽  
Author(s):  
C. P. Whittingham ◽  
Margaret Bermingham ◽  
R. G. Hiller

Uniformly labelled radioactive glucose was fed to Chlorella cells in the presence of non-radioactive carbon dioxide. The concentration of carbon dioxide was varied and the distribution of radioactivity determined in the light. At low concentrations of carbon dioxide much of the radioactivity appeared in glycollate or derivatives thereform. By contrast, at higher concentrations of carbon dioxide, most of the radioactivity appeared in sucrose. If the concentration of oxygen was increased above that normally present in air, there was relatively more activity in glycollate. The effect of the addition of isoniazid in these conditions was also investigated. It was concluded that glucose fed to Chlorella exogenously is metabolised in the light in Chlorella via sugar phosphate intermediates of the Calvin cycle.

2020 ◽  
Author(s):  
Marc W. Van Goethem ◽  
Surendra Vikram ◽  
David W. Hopkins ◽  
Grant Hall ◽  
Stephan Woodborne ◽  
...  

AbstractThe balance of nutrients in soil is critical for microbial growth and function, and stoichiometric values below the Redfield ratio for C:N:P can negatively affect microbial ecosystem services. However, few studies have assessed the relationships between nutrient balance and biological productivity in extremely nutrient-poor habitats. The Mackay Glacier region of Eastern Antarctica is a hyper-oligotrophic ice-free desert and is an appropriate landscape to evaluate the effects of nutrient deficiency and imbalance on microbial community ecology. In a survey of multiple, widely dispersed soil samples from this region, we detected only low rates of microbial respiration, and observed that C:N:P ratios were well below those required for optimal activity. In silico metagenomic and soil isotopic ratio (δ15N) analyses indicated that the capacity for nitrogen fixation was low, but that soil microbial communities were enriched for soil nitrate assimilation processes, mostly associated with heterotrophic taxa. δ13C isotope ratio data suggested that carbon dioxide was fixed principally via the Calvin cycle. Genes involved in this pathway were common to all metagenomes and were primarily attributed to members of the dominant soil bacterial phyla: Bacteroidetes and Acidobacteria. The identification of multiple genes encoding non-photoautotrophic RUBISCO and carbon dioxide dehydrogenase enzymes in both the metagenomic sequences and assembled MAGs is suggestive of a trace-gas scavenging physiology in members of these soil communities.


1961 ◽  
Vol 39 (11) ◽  
pp. 1717-1735 ◽  
Author(s):  
P. G. Scholefield

The cumulative entry of amino acids into Ehrlich ascites carcinoma cells is due to the presence of active transport systems, each with its own specific range of substrates. Several amino acids and amino acid analogues may have an affinity for the same transport system and thus may inhibit transport of other amino acids by acting as competitive inhibitors or competitive substrates. Loss of methionine from ascites cells takes place by a diffusion process which obeys Fick's law. Leucine accumulation by ascites cells is small and is increased on addition of certain other amino acids. The increase is not due to inhibition of leucine oxidation as increase in the rate of production of radioactive carbon dioxide from labeled leucine also occurs. Kinetic aspects of these results are discussed.


Author(s):  
Gina Stewart

The process of cleaning one item invariably involves making something else dirty. Whether that something else is an organic or halogenated solvent, soapy water, or a rag, we seldom address the dirtying that accompanies any cleaning process. If we are to achieve environmentally benign cleaning, we must look at the life cycle of solvents employed for cleaning, including the potential for recycling, reuse, or release into the environment. Truly “green” cleaning processes not only minimize the amount of waste generated; but also they prevent the dispersal of that waste into large amounts of solvent, water, soil, or air. Dense-phase carbon dioxide is a great cleaning solvent from a pollution-prevention viewpoint. By-product CO2 generated by other industrial processes can be captured, so it is not necessary to generate CO2 specifically for cleaning. Spills of CO2 will not contaminate groundwater or create a need for soil remediation. Carbon dioxide even has advantages for the work environment, since no chronic, harmful effects are known from repeated inhalation of low concentrations of CO2. The barriers to using CO2 as a cleaning solvent have centered around two issues: the expense of high-pressure equipment and the poor solubility of many contaminants in CO2. Micell Technologies, Inc., based in Raleigh, NC, has addressed the equipment issue by using liquid CO2 just below ambient temperature (∼18–22 °C) and vapor pressure (∼50 bar). The equipment needed to contain this pressure is considerably less expensive than that needed for supercritical CO2 processes. As for the second barrier, Micell has surfactant packages that enhance the ability of CO2 to dissolve many contaminants commonly found on clothes or on metal parts. Micell is in the process of designing and bringing to market integrated CO2 solutions, including equipment and appropriate chemistries, to replace the organic solvents or water traditionally used in garment dry cleaning, metal degreasing, and textile processing. Dry cleaning is a bit of a misnomer, in that clothes are cleaned in a liquid solvent. “Dry” simply means that exposure of a garment, such as a wool suit or silk blouse, to water is minimized to prevent damage to hydrophilic fibers.


1956 ◽  
Vol 34 (1) ◽  
pp. 495-501 ◽  
Author(s):  
J. F. T. Spencer ◽  
A. C. Neish ◽  
A. C. Blackwood ◽  
H. R. Sallans

D-Glucose was dissimilated aerobically by a strain of osmophilic yeast producing glycerol, D-arabitol, ethanol, carbon dioxide, and a small amount of succinic acid. Glucose-1-C14 gave glycerol labeled in the terminal carbons, D-arabitol labeled in carbon-1 and carbon-5, methyl labeled ethanol, and succinic acid with 30% of the labeling in the carboxyl carbons and 70% in the methylene carbons. Glucose-2-C14 gave glycerol labeled in carbon-2, D-arabitol labeled in carbon-1, carbon-2, and carbon-4, carbinol labeled ethanol, and succinic acid having 70% of the labeling in the carboxyl carbons and 30% in the methylene carbons. Labeled carbon dioxide was produced from both carbon-1 and carbon-2 labeled glucose but the specific activity of carbon dioxide from glucose-1-C14 was higher than that from glucose-2-C14. The distribution of radioactive carbon in the products is explained by assuming that glucose is dissimilated via a combination of the Embden–Meyerhof and the phosphogluconate oxidation pathways, with transketolase-catalyzed reactions playing an important part in D-arabitol formation.


1976 ◽  
Vol 54 (2) ◽  
pp. 178-184 ◽  
Author(s):  
Ronald O. Hallock ◽  
Esther W. Yamada

Dihydrouracil dehydrogenase (NADP+) (EC 1.3.1.2) was partially purified from the cytosol fraction of rat liver and fractionated by disc gel electrophoresis. A major and minor band were visualized by staining for enzyme activity. The substrate specificity of these bands was investigated. It was found that both bands were two to three times more active with dihydrothymine as substrate than with dihydrouracil in the presence of NADP+ and the optimum pH of 7.4.Mitochondrial fractions containing most of the NADH-dependent uracil reductase of rat liver cells were fractionated by centrifugation in sucrose density gradients. Two procedures involving linear or discontinuous gradients were used. By both, good separation of NADH- and NADPH-dependent reductases was achieved. Marker enzyme studies supported the view that the NADH-dependent enzyme is located principally in mitochondria whereas the NADPH-dependent enzyme is mainly in plasma and endoplasmic reticulum membranes. For the NADH-dependent reductase the apparent Km for thymine at pH 7.4 was 1.39 times that found for uracil whereas for the NADPH-dependent enzyme the apparent Km values were similar for the two substrates at this pH.Dihydrouracil was the principal product isolated by paper chromatography from the reaction mixture containing a partially purified fraction of mitochondria, uracil and NADH at pH 7.4. This fraction also catalyzed the formation of radioactive carbon dioxide from [2-14C]uracil. The proportion of CO2 formed by the mitochondria was about 10% of that formed by the original homogenate.


1979 ◽  
Vol 25 (6) ◽  
pp. 675-679 ◽  
Author(s):  
R. M. Behki ◽  
S. M. Lesley

Thymidine is rapidly catabolized to thymine, β-aminoisobutyric acid, and carbon dioxide by Rhizobium meliloti cells. The incorporation of labelled thymidine into the DNA of R. meliloti cells can be enhanced by the addition of low concentrations (10–20β μg/mL) of deoxyadenosine or other nucleosides (adenosine, uridine, guanosine). However, at high concentrations (>50 μg/mL) these compounds inhibit thymidine incorporation. Conditions to obtain highly radioactive DNA of Rhizobium are described.


Sign in / Sign up

Export Citation Format

Share Document