scholarly journals Kinetic evidence for a two-step mechanism for the binding of chymotrysin to α1-proteinase inhibitor

1989 ◽  
Vol 259 (3) ◽  
pp. 929-930 ◽  
Author(s):  
M Bruch ◽  
J G Bieth

We have used the proflavin displacement method and a stopped-flow apparatus to measure the rate constant for the binding of 2 microM-chymotrypsin to 20-125 microM-alpha 1-proteinase inhibitor. The observed pseudo-first-order constant showed a hyperbolic dependence on alpha 1-proteinase inhibitor concentration, suggesting a reaction mechanism in which a fast pre-equilibrium (K = 0.19 mM) is followed by a first-order formation of the final complex (k = 252 s-1).

1991 ◽  
Vol 280 (1) ◽  
pp. 27-32 ◽  
Author(s):  
B Faller ◽  
J G Bieth

The kinetics of binding of recombinant eglin c to bovine pancreatic chymotrypsin was studied by conventional and stopped-flow techniques. With nanomolar enzyme and inhibitor concentrations, the inhibition was fast and pseudo-irreversible (k(assoc.) = 4 x 10(6) m-1.s-1 at 7.4 and 25 degrees C). Reaction of the enzyme-inhibitor complex with alpha 1-proteinase inhibitor, an irreversible chymotrypsin ligand, resulted in a slow release of free eglin c, which was monitored by electrophoresis (k(dissoc.) approximately 1.6 x 10(-6) s-1, t1/2 approximately 5 days). The proflavin displacement method and a stopped-flow apparatus were used to monitor the association of chymotrypsin with eglin c under a wide range of inhibitor concentration and under pseudo-first-order conditions. At pH 7.4 and 25 degrees C or 5 degrees C, or at pH 5.0 and 25 degrees C, the pseudo-first-order rate constant of proflavin displacement increased linearly with eglin c up to the highest concentration tested, suggesting a one-step bimolecular association reaction: E + I in equilibrium with EI. However, kassoc. is much lower than the rate constant for a bimolecular reaction and its activation energy (66 kJ.mol-1 at pH 7.4 and 78 kJ.mol-1 at pH 5.0) is far too high for a diffusion-controlled step. The enzyme-inhibitor association may therefore occur via a loose pre-equilibrium complex EI* (Ki* much greater than 5 x 10(-4) M) that rapidly isomerizes (k2 much greater than 2 x 10(3) s-1) into an extremely stable final complex (Ki approximately 4 x 10(-13) M). Unlike other proteinase-inhibitor systems, the chymotrypsin-eglin association is virtually pH-independent.


2005 ◽  
Vol 09 (03) ◽  
pp. 198-205 ◽  
Author(s):  
Fabrizio Monacelli ◽  
Elisa Viola

The oxo-bridged complex ( py ) FePc - O - FePc ( py ) ( py = pyridine , Pc = phthalocyaninato dianion) reacts in dichloromethane with hydrogen sulphide giving elementary sulphur and the reduced ( py )2( FePc ) complex in the stoichiometric ratio 1:1. Under excess py and H2S , the reaction is first-order and the rate constant at a given py concentration is an increasing function of the reducing agent concentration, with asymptotic tendency to a limiting value. This latter depends on the pyridine concentration being higher the lower is the base concentration. When the reaction is carried out in pure pyridine, the rate constant is, instead, a strictly linear function of [ H2S ], with zero intercept. A reaction mechanism is proposed where the dichloromethane is directly involved in the axial coordination about the iron centers and H2S competes efficiently with both pyridine and solvent.


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


1976 ◽  
Vol 153 (2) ◽  
pp. 495-497 ◽  
Author(s):  
D C Wilton

The enzyme deoxyribose 5-phosphate aldolase was irreversibly inactivated by the substrate analogue acrolein with a pseudo-first-order rate constant of 0.324 min-1 and a Ki (apparent) of 2.7 × 10(-4) m. No inactivation was observed after prolonged incubation with the epoxide analogues glycidol phosphate and glycidaldehyde. It is suggested that the acrolein is first activated by forming a Schiff base with the enzyme active-site lysine residue and it is the activated inhibitor that reacts with a suitable-active-site nucleophile.


1988 ◽  
Vol 34 (10) ◽  
pp. 1971-1975 ◽  
Author(s):  
D R Hoak ◽  
S K Banerjee ◽  
G Kaldor

Abstract Here, we used a fully automated, computer-directed centrifugal analyzer (which permitted simultaneous turbidimetry and calculation of results) and purified thrombin, fibrinogen, and various inhibitors to study clot formation. The Km and Vm for these reactions were useful in detecting and partly characterizing anticoagulants. We also explored the generation and inactivation of thrombin, using the two-stage prothrombin time and antithrombin activity tests. The amount of thrombin instantaneously generated and inactivated was monitored under artificially created pathological conditions. The pseudo-first-order rate constant for thrombin generation and inactivation and the instantaneous concentration of enzymatically active and inactive thrombin were used in the characterization of these conditions. We believe this approach is suitable for routine clinical use.


1993 ◽  
Vol 293 (2) ◽  
pp. 537-544 ◽  
Author(s):  
H J Lee ◽  
S H Chiou ◽  
G G Chang

The argininosuccinate lyase activity of duck delta-crystallin was inactivated by diethyl pyrocarbonate at 0 degrees C and pH 7.5. The inactivation followed pseudo-first-order kinetics after appropriate correction for the decomposition of the reagent during the modification period. The plot of the observed pseudo-first-order rate constant versus diethyl pyrocarbonate concentration in the range of 0.17-1.7 mM was linear and went through the origin with a second-order rate constant of 1.45 +/- 0.1 M-1.s-1. The double-logarithmic plot was also linear, with slope of 1.13, which suggested a 1:1 stoichiometry for the reaction between diethyl pyrocarbonate and delta-crystallin. L-Arginine, L-norvaline or L-citrulline protected the argininosuccinate lyase activity of delta-crystallin from diethyl pyrocarbonate inactivation. The dissociation constants for the delta-crystallin-L-arginine and delta-crystallin-L-citrulline binary complexes, determined by the protection experiments, were 4.2 +/- 0.2 and 0.12 +/- 0.04 mM respectively. Fumarate alone had no protective effect. However, fumarate plus L-arginine gave synergistic protection with a ligand binding interacting factor of 0.12 +/- 0.02. The double-protection data conformed to a random Uni Bi kinetic mechanism. Fluorescence-quenching studies indicated that the modified delta-crystallin had minimum, if any, conformational changes as compared with the native delta-crystallin. Inactivation of the enzyme activity was accompanied by an increasing absorbance at 240 nm of the protein. The absorption near 280 nm did not change. Treatment of the modified protein with hydroxylamine regenerated the enzyme activity to the original level. These results strongly indicated the modification of an essential histidine residue. Calculation from the 240 nm absorption changes indicated that only one histidine residue per subunit was modified by the reagent. This super-active histidine residue has a pKa value of approximately 6.8 and acts as a general acid-base catalyst in the enzyme reaction mechanism. Our experimental data are compatible with an E1cB mechanism [Raushel (1984) Arch. Biochem. Biophys. 232, 520-525] for the argininosuccinate lyase with the essential histidine residue close to the arginine-binding domain of delta-crystallin. L-Citrulline, after binding to this domain, might form an extra hydrogen bond with the essential histidine residue.


2011 ◽  
Vol 255-260 ◽  
pp. 2904-2908
Author(s):  
Li Jie Huang ◽  
Ting Xu ◽  
Shuang Fei Wang

Experiments were conducted to investigate the decolorization of methyl orange simulated wastewater in order to assess the effectiveness and feasibility of ultrasound(US) enhanced high-purity chlorine dioxide(ClO2) oxidation process. The results showed that in ClO2/US system the decolorization rate of methyl orange was up to 96%, which was increased by 8% as compared to ClO2treatment alone. The decolorization of methyl orange with/without ultrasonic irradiation follows apparent pseudo-first-order reaction kinetics. The apparent pseudo-first-order rate constant kappwas 0.19min-1in the ClO2/US system, which was a little higher than 0.13min-1of rate constant achieved in ClO2treatment alone. It shows that ClO2/US system can be an effective technology for the decolorization of azo dyes in wastewater.


2012 ◽  
Vol 65 (11) ◽  
pp. 1970-1974 ◽  
Author(s):  
C. Y. Kuo ◽  
C. Y. Pai ◽  
C. H. Wu ◽  
M. Y. Jian

This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H2O2 and Na2S2O8; Fe2+, Fe3+, and Co2+ were used to activate these two oxidants. The effects of oxidant concentration (0.3–2 mmol/L) and temperature (25–55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H2O2/Fe2+, UV/H2O2/Fe3+, UV/Na2S2O8/Fe2+ and UV/Na2S2O8/Fe3+ systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.


1975 ◽  
Vol 151 (1) ◽  
pp. 51-59 ◽  
Author(s):  
S R Parr ◽  
M T Wilson ◽  
C Greenwood

The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 × 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 × 10(4)M-1-s-1 and 1.6 × 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.


1970 ◽  
Vol 25 (5) ◽  
pp. 484-491 ◽  
Author(s):  
Hans-Friedrich Eicke ◽  
Helmut Fiege ◽  
Karl-Dietrich Gundermann

The chemoluminescence-system: DNH/NaOHaq/H2O2/hemin was investigated with the help of a “stopped-flow-technique”. By use of an optical cut-off-filter the chemoluminescence- (514 nm), and the absorptionband (325 nm) resp. could be separated which proved impossible with luminol. In this way we could follow the temporal change of chemoluminescence and of absorption of DNH: the latter dropped coutinually with progress of the reaction while the chemoluminescence-intensity passed through a maximum before it decreased according to the same rate law (pseudo first order conditions as for DNH) which governs the absorption change of DNH. The oxidation of DNH is rate-determining and of first order as to DNH, H2O2 and (possibly) NaOH (k1 = 1,5·10-3 s-1-1 M-2). The kinetic interpretation of the chemoluminescence-maxima confirmed this result. The light production occurred in a very fast secondary reaction step (k2 ≫ k1) following the oxidation of the hydrazid and with H2O2 participating. Diazochinone is assumed to be a primary oxidation product.


Sign in / Sign up

Export Citation Format

Share Document