Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation

2018 ◽  
Vol 73 (11) ◽  
pp. 849-863 ◽  
Author(s):  
Sebastian Wilde ◽  
Linda Stegemann ◽  
Constantin G. Daniliuc ◽  
Tobias Koch ◽  
Nikos L. Doltsinis ◽  
...  

AbstractHerein, we present three new tetradentate C^N*N^C luminophores and their platinum(II) complexes. We describe the influence of the degree of fluorination at the phenylpyridine luminophore on the photophysical properties of the monomeric species. A blue-shift can be observed with increasing number of fluorine atoms (0–6), which is related to a growing HOMO-LUMO gap that reaches a maximum for four halogen moieties. Increasing degree of fluorination enables intermolecular Pt–Pt interactions and promotes emission from 3MMLCT states in amorphous solids and matrices, with the drawback of lowered solubility. A clear trend towards layered packing patterns in crystals has been observed within the series. This knowledge is important for the design and realization of triplet emitters with aggregation-controlled luminescence towards potential applications in optoelectronic devices.

2021 ◽  
Author(s):  
Wenjuan Wei ◽  
Hongqiang Gao ◽  
Yuhui Tan ◽  
Yunzhi Tang

Two-dimensional (2D) organic-inorganic hybrid perovskites with multifunctional characteristics have potential applications in many fields, such as, solar cells, microlasers and light-emitting diodes (LEDs), etc. Here, a 2D organic-inorganic lead halide perovskite, [Br(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>]<sub>2</sub>PbBr<sub>4</sub> (<b>BPA-PbBr<sub>4</sub></b>, BPA = Br(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>, 3-Bromopropylamine), is examined for its photophysical properties. Interestingly, <b>BPA-PbBr<sub>4</sub></b> reveals five successive phase transitions with decreasing temperature, including successive paraelectric-ferroelectric-antiferroelectric phases. Besides, <b>BPA-PbBr<sub>4</sub></b> displays ferroelectricity and antiferroelectricity throughout a wide temperature range (<376.4 K) with accompanying saturation polrization (<i>P</i><sub>s</sub>) values of 4.35 and 2.32 μC/cm<sup>2</sup>, respectively, and energy storage efficiency of 28.2%, and also exhibits superior second harmonic generation (SHG) with maximum value accounts for 95 % of the standard KDP due to the great deformation of structure (3.2302*10<sup>-4</sup>). In addition, the photoluminescence (PL) of the <b>BPA-PbBr<sub>4</sub></b> exhibits abnormal red-shift and blue-shift in different phases due to a consequence of competition between electron-phonon interaction and the lattice expansion. Further, <b>BPA-PbBr<sub>4</sub></b> reveals a broadband emission accompanied by bright white light at room temperature (293 K), which is supposed to be due to self-trapped excitons. In short, the versatility of <b>BPA-PbBr<sub>4</sub></b> originates from molecular reorientation of dynamic organic cations, as well as significant structural distortion of PbBr<sub>6</sub> octahedra. This work paves an avenue to design new hybrid multifunctional perovskites for potential applications in the photoelectronic field.


2021 ◽  
Author(s):  
Wenjuan Wei ◽  
Hongqiang Gao ◽  
Yuhui Tan ◽  
Yunzhi Tang

Two-dimensional (2D) organic-inorganic hybrid perovskites with multifunctional characteristics have potential applications in many fields, such as, solar cells, microlasers and light-emitting diodes (LEDs), etc. Here, a 2D organic-inorganic lead halide perovskite, [Br(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>]<sub>2</sub>PbBr<sub>4</sub> (<b>BPA-PbBr<sub>4</sub></b>, BPA = Br(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>, 3-Bromopropylamine), is examined for its photophysical properties. Interestingly, <b>BPA-PbBr<sub>4</sub></b> reveals five successive phase transitions with decreasing temperature, including successive paraelectric-ferroelectric-antiferroelectric phases. Besides, <b>BPA-PbBr<sub>4</sub></b> displays ferroelectricity and antiferroelectricity throughout a wide temperature range (<376.4 K) with accompanying saturation polrization (<i>P</i><sub>s</sub>) values of 4.35 and 2.32 μC/cm<sup>2</sup>, respectively, and energy storage efficiency of 28.2%, and also exhibits superior second harmonic generation (SHG) with maximum value accounts for 95 % of the standard KDP due to the great deformation of structure (3.2302*10<sup>-4</sup>). In addition, the photoluminescence (PL) of the <b>BPA-PbBr<sub>4</sub></b> exhibits abnormal red-shift and blue-shift in different phases due to a consequence of competition between electron-phonon interaction and the lattice expansion. Further, <b>BPA-PbBr<sub>4</sub></b> reveals a broadband emission accompanied by bright white light at room temperature (293 K), which is supposed to be due to self-trapped excitons. In short, the versatility of <b>BPA-PbBr<sub>4</sub></b> originates from molecular reorientation of dynamic organic cations, as well as significant structural distortion of PbBr<sub>6</sub> octahedra. This work paves an avenue to design new hybrid multifunctional perovskites for potential applications in the photoelectronic field.


2012 ◽  
Vol 67 (3) ◽  
pp. 213-218 ◽  
Author(s):  
Bihai Tong ◽  
Jiayan Qiang ◽  
Qunbo Mei ◽  
Hengshan Wang ◽  
Qianfeng Zhang ◽  
...  

Four cationic Ir(III) complexes, [Ir(dpq)2(bpy)]PF6 (1), [Ir(dpq)2(phen)]PF6 (2), [Ir(tfapq)2- (bpy)]PF6 (3), and [Ir(tfapq)2(phen)]PF6 (4) (dpqH = 2,4-diphenylquinoline, tfapqH = 2-(4ʹ-trifluoroacetylphenyl)- 4-phenylquinoline, bpy = 2,2ʹ-bipyridine, phen = 1,10-phenanthroline) have been synthesized and fully characterized. The structure of 4 was also confirmed by single-crystal X-ray diffraction. The electron-acceptor character of the trifluoroacetyl unit leads to a reduced HOMO-LUMO gap and consequently a red-shift of the UV/Vis absorption and luminescence spectra. The solvophobic character of the trifluoroacetyl unit gives rise to a molecule assembly in solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksey E. Kuznetsov

Abstract The first comparative DFT (B3LYP/6-31G*) study of the Zn-porphyrin and its two derivatives, ZnP(P)4 and ZnP(As)4, is reported. For all three species studied, ZnP, ZnP(P)4 and ZnP(As)4, the singlet was calculated to be the lowest-energy structure and singlet-triplet gap was found to decrease from ca. 41—42 kcal/mol for N to ca. 17—18 kcal/mol for P and to ca. 10 kcal/mol for As. Both ZnP(P)4 and ZnP(As)4 were calculated to attain very pronounced bowl-like shapes. The frontier molecular orbitals (MOs) of the core-modified porphyrins are quite similar to the ZnP frontier MOs. For the HOMO-2 of the core-modified porphyrins due to the ZnP(P)4/ZnP(As)4 bowl-like shapes we might suppose the existence of “internal” electron delocalization inside the ZnP(P)4/ZnP(As)4 “bowls”. Noticeable reduction of the HOMO/LUMO gaps was calculated for ZnP(P)4 and ZnP(As)4, by ca. 1.10 and 1.47 eV, respectively, compared to ZnP. The core-modification of porphyrins by P and especially by As was found to result in significant decrease of the charge on Zn-centers, by ca. 0.61—0.67e for P and by ca. 0.69—0.76e for As. Charges on P- and As-centers were computed to have large positive values, ca. 0.41—0.45e and ca. 0.43—0.47e, for P and As, respectively, compared to significant negative values, ca. −0.65 to −0.66e for N. The porphyrin core-modification by heavier N congeners, P and As, can noticeably modify the structures, electronic, and optical properties of porphyrins, thus affecting their reactivity and potential applications.


2011 ◽  
Vol 311-313 ◽  
pp. 526-529
Author(s):  
Cai Juan Xia ◽  
Han Chen Liu ◽  
Ji Xin Yin

Using non-equilibrium Green’s function formalism combined with first-principles density functional theory, we investigate the electronic transport properties of a triangle terarylene(open- and closed-ring forms) optical molecular switch. The influence of the HOMO-LUMO gaps and the spatial distributions of molecular orbitals on the quantum transport through the molecular device is discussed. Theoretical results show that the conductance of the closed-ring is 3-8 times larger than that of open-ring, which expect that this system can be one of good candidates for optical switches due to this unique advantage, and may have some potential applications in future molecular circuit.


Author(s):  
Sofia Canola ◽  
Yasi Dai ◽  
Fabrizia Negri

Conjugated singlet ground state diradicals have received remarkable attention owing to their potential applications in optoelectronic devices. A distinctive character of these systems is the location of the double exciton state, a low lying excited state dominated by the doubly excited H,H&rarr;L,L configuration, which may influence optical and other photophysical properties. In this contribution we investigate this specific excited state, for a series of recently synthesized conjugated diradicals, employing time dependent density functional theory based on the unrestricted parallel spin reference configuration in the spin-flip formulation (SF-TDDFT) and standard TD calculations based on the unrestricted antiparallel spin reference configuration (TDUDFT). The quality of the computed results is assessed considering diradical and multiradical descriptors and the excited state wavefunction composition.


Author(s):  
Jorge Aguilera ◽  
Víctor García-González ◽  
Manuel Alatorre-Meda ◽  
Eustolia Rodríguez-Velázquez ◽  
Ignacio Rivero

In this work, we explored the synthesis of 4,4-difluoro-4-bora-3a,4a-diazas-indacene (BODIPYs) bound to five different amino acids (BODIPY-FAA) (glycine, alanine, leucine, phenylalanine, and tyrosine) (amino group is kept protected with fluorophore Fmoc) and evaluated these conjugates in terms of (i) their photophysical properties and (ii) their potential application as cell staining agents of suspension and adherent cells at healthy and stress conditions. In general, all synthesized BODIPY-FAA (3a-3e) were found to emit fluorescence in the blue and green regions of the spectrum (depending on the solvent conditions). However, BODIPY-FTyr(trt) (3e) showed the best molar extinction coefficient (ε = 28,198 M-1 cm-1) and quantum yield (Φ = 0.17). Biologically speaking, all synthesized conjugates demonstrated a selective affinity for the cytoplasm of Langerhans β-cells employed as a model, being the BODIPY-FLeu conjugate the one displaying the highest observed intensity. As such, our results reveal the BODIPY-FAA as a novel attractive tool for the specific staining of the cell cytoplasm, demonstrating not only a dual fluorescence emission but also a sensing capability to recognize different cell states.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 32 ◽  
Author(s):  
Siyang Ding ◽  
Bicheng Yao ◽  
Louis Schobben ◽  
Yuning Hong

Fluorescent dyes, especially those emitting in the long wavelength region, are excellent candidates in the area of bioassay and bioimaging. In this work, we report a series of simple organic fluorescent dyes consisting of electron-donating aniline groups and electron-withdrawing barbituric acid groups. These dyes are very easy to construct while emitting strongly in the red region in their solid state. The photophysical properties of these dyes, such as solvatochromism and aggregation-induced emission, are systematically characterized. Afterward, the structure–property relationships of these barbituric acid based fluorogens are discussed. Finally, we demonstrate their potential applications for protein amyloid fibril detection.


2018 ◽  
Vol 23 (2) ◽  
pp. 241-266 ◽  
Author(s):  
Ximena Verónica Jaramillo-Fierro ◽  
César Zambrano ◽  
Francisco Fernández ◽  
Regino Saenz-Puche ◽  
César Costa ◽  
...  

A new Cu(I) complex constructed by reaction of trithiocyanuric acid (ttc) and copper (II) perchlorate hexahydrate has been successfully synthesized by a slow sedimentation method in a DMF solvent at room temperature. The molecular structure of the compound was elucidated by MALDI-TOFMS, UV Vis and FTIR spectroscopy, DSC-TGA analysis and magnetic susceptibility measurement. The proposed structure was corroborated by a computational study carried out with the Gaussian09 and AIMAII programs using the RB3LYP hybrid DFT functional with both 6-31G and Alhrich-TZV basis sets. The calculated vibrational frequencies values were compared with experimental FTIR values. Photophysical properties of the synthesized complex were evaluated by UV-Visible spectroscopy and compared with computed vertical excitation obtained from TDDFT. The theoretical vibrational frequencies and the UV Vis spectra are in good agreement with the experimental values. Additionally, the Frontier Molecular Orbitals (HOMO-LUMO) and the Molecular Electrostatic Potential of the complex was calculated using same theoretical approximation. The results showed the interaction between three coordinatedl igand atoms and the Cu(I) ion.


2017 ◽  
Vol 865 ◽  
pp. 60-63
Author(s):  
Ning Wang ◽  
Xiao Dan Hu

In this paper, we reported one vinylfluorene derivative 9,9-dihexyl-vinylfluorene and its corresponding polymers. The monomer and polymers were characterized by NMR, UV-Vis, PL and Gel Permeation Chromatography (GPC). Compared with the monomer, the polymers showed blue-shift in UV-Vis spectra but red-shift in PL spedtra. This kind of side-chain polyfluorenes could be candidates of blue OLED, organic solar cells, and so on.


Sign in / Sign up

Export Citation Format

Share Document