Effect of Different Cyclohexane-1,3-dione Derivatives on the de novo Fatty-Acid Biosynthesis in Isolated Oat Chloroplasts

1990 ◽  
Vol 45 (1-2) ◽  
pp. 84-88 ◽  
Author(s):  
K. Kobek ◽  
H. K. Lichtenthaler

In the test system of isolated oat chloroplasts various structurally different cyclohexane-1.3- dione derivatives were investigated for their inhibitory effect on de novo fatty-acid biosynthesis. Cycloxydim proved to be the most efficient inhibitor in the group of the tested cyclohexane-1,3-diones. The alkoxyimino side-chain appears to be essential for the herbicidal activity. Compounds with variations in other substituents of the cyclohexanedione structure were less inhibitory. The I50-values of most of the applied substances for a 50% inhibition of de novo fatty-acid biosynthesis were in the range of 0.15 μM to 100 μM . Some compounds, however, showed no inhibitory effect.

1989 ◽  
Vol 44 (7-8) ◽  
pp. 669-672 ◽  
Author(s):  
Klaus Kobek ◽  
Hartmut K. Lichtenthaler

It is demonstrated that - similar to chloroplasts - etioplasts isolated from leaves of pea (Pisumsativum L.) and oat seedlings (Avena sativa L.) also possess a high capacity for de novo fatty acid biosynthesis starting from [1-14C]acetate. The etioplast system proved to be a suitable test system for inhibitors of de novo fatty acid biosynthesis such as cycloxydim , sethoxydim and diclofop. In contrast to the chloroplast test system , the etioplast system is independent of light and also permits screening of photosynthetic herbicides as potential inhibitors of fatty acid biosynthesis.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 42
Author(s):  
Ni An ◽  
Jianyuan Zhao ◽  
Shan Cen

Human SAMHD1 is an IFN-induced dNTP triphosphatase that is able to restrict HIV-1 replication, whereas its role in innate immunity against virus infection remains largely unexplored. In this work, we provided evidence that SAMHD1 functions as an anti-HCV host factor. We found that overexpression of SAMHD1 resulted in significant inhibition on the replication of HCV, but not other RNA viruses including influenza A virus and EV71. SAMHD1 knockdown partially relieved the inhibitory effect of IFN on HCV, suggesting its important role in the innate immune response against HCV. Mechanistic studies revealed that SAMHD1 targets viral RNA replication without impact on both protein translation and virus entry. Transcriptome analysis showed a broad inhibitory effect of SAMHD1 on host genes involved in cholesterol and fatty acid biosynthesis. In particular, SAMHD1 was shown to downregulate the mRNA abundance of SREBP1, a master transcriptional regulator of de novo lipid biosynthesis, impairing the formation of lipid droplets. Restoring intracellular lipid levels by either exogenous lipid addition or SREBP1 overexpression counteracted the restriction of HCV by SAMHD1, providing evidence that SAMHD1 inhibits the replication of HCV by suppressing host cholesterol and fatty acid biosynthesis. Together, these data unveil, for the first time, a novel antiviral mechanism of SAMHD1 and open new avenues for the development of novel anti-HCV therapeutics.


1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

1992 ◽  
Vol 47 (5-6) ◽  
pp. 382-386 ◽  
Author(s):  
Bernd List ◽  
Andrea Golz ◽  
Wilhelm Boland ◽  
Hartmut K. Lichtenthaler

The antibiotic cerulenin was shown to be a potent dose-dependent inhibitor of de novo fattyacid biosynthesis in intact isolated chloroplasts of different plants (measured as [14C]acetate incorporation into the total fatty-acid fraction). Various chemical derivatives of cerulenin were synthesized and tested in the chloroplast assay-system of oat, spinach and pea. Modifications of the hydrocarbon chain of cerulenin (e.g. tetrahydro-cerulenin and its short-chain cis-2,3-epoxy-4-oxoheptanamide derivative) decreased the inhibitory activity of cerulenin, whereas variations of the epoxy-oxo-amide structural element led to a complete loss of inhibition potency. The results indicate that the naturally occurring antibiotic cerulenin is the most active specific inhibitor of de novo fatty-acid biosynthesis, but the formation of the hydroxylactam ring seems to be an essential requirement for the inhibitory activity. Those structural analogues of cerulenin, which can no longer form a hydroxylactam ring, do not possess any inhibitory capacity.


1963 ◽  
Vol 41 (1) ◽  
pp. 1267-1274
Author(s):  
Peter F. Hall ◽  
Edward E. Nishizawa ◽  
Kristen B. Eik-Nes

The fatty acids palmitic, palmitoleic, stearic, and oleic have been isolated from rabbit testis and evidence for the synthesis of palmitic and stearic acids de novo from acetate-1-C14is presented. ICSH did not produce demonstrable stimulation of the synthesis of these acids in vitro although the hormone stimulated the production of testosterone-C14by the same tissue. Adrenal tissue was shown to contain palmitic, stearic, and oleic acids, and ACTH did not increase the incorporation of acetate-1-C14into a fatty acid fraction extracted following incubation of adrenal tissue in the presence of this substrate. Fatty acid biosynthesis, therefore, is probably not influenced by the mechanisms by which tropic hormones increase steroid formation.


1990 ◽  
Vol 45 (5) ◽  
pp. 518-520 ◽  
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Thiolactomycin was shown to be a potent inhibitor of de novo fatty acid biosynthesis in intact isolated chloroplasts (measured as [14C]acetate incorporation into total fatty acids). In our attempt to further localize the inhibition site we confirmed the inhibition with a fatty acid synthetase preparation, measuring the incorporation of [14C]malonyl-CoA into total fatty acids. From the two proposed enzymic targets of the fatty acid synthetase by thiolactomycin we could exclude the acetyl-CoA: ACP transacetylase. It appears that the inhibition by thiolactomycin occurs on the level of the condensing enzymes, i.e. the 3-oxoacyl-ACP synthases. We also demonstrated that the two starting enzymes of de novo fatty acid biosynthesis, the acetyl-CoA synthetase and the acetyl-CoA carboxylase, are not affected by thiolactomycin.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Regiane Kawasaki ◽  
Rafael A. Baraúna ◽  
Artur Silva ◽  
Marta S. P. Carepo ◽  
Rui Oliveira ◽  
...  

Exiguobacterium antarcticumB7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show thein silicoreconstruction of the fatty acid biosynthesis pathway ofE. antarcticumB7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using thelog2⁡FCvalues obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity ofE. antarcticumB7 tode novoproduce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.


2020 ◽  
Author(s):  
Michael Burkart ◽  
Thomas Bartholow ◽  
Terra Sztain ◽  
Ashay Patel ◽  
D Lee ◽  
...  

Abstract Fatty acid biosynthesis (FAB) is an essential and highly conserved metabolic pathway. In bacteria, this process is mediated by an elaborate network of protein•protein interactions (PPIs) involving a small, dynamic acyl carrier protein that interacts with dozens of other partner proteins (PPs). These PPIs have remained poorly characterized due to their dynamic and transient nature. Using a combination of solution-phase NMR spectroscopy and protein-protein docking simulations, we report a comprehensive residue-by-residue comparison of the PPIs formed during FAB in Escherichia coli. This work reveals the molecular basis of six discrete binding events responsible for E. coli FAB and offers insights into a method to characterize these events and those in related carrier protein-dependent pathways. ONE SENTENCE SUMMARY: Through a combination of structural and computational analysis, a comparative evaluation of protein-protein interactions in de novo fatty acid biosynthesis in E. coli is performed.


Sign in / Sign up

Export Citation Format

Share Document