Uptake of S-(3-Amino-3-oxopropyl)-cysteine by Caco-2 Cells

2008 ◽  
Vol 63 (11-12) ◽  
pp. 913-918 ◽  
Author(s):  
Thomas Schwend ◽  
Jens Schabacker ◽  
Bernhard Wetterauer ◽  
Michael Wink

Abstract Acrylamide is a reactive neurotoxin with a high intestinal bioavailability. Recently we have shown that under the pH regime of the gut acrylamide can react with proteins and that this reaction reduces the uptake of acrylamide in a gut model. On the other hand, using radioactive labeled acrylamide, Bjellaas et al. [Toxicol. Sci. 100, 374-380 (2007)] showed that in vivo the vast majority of orally administered acrylamide is absorbed and excreted as N-acetyl-S- (3-amino-3-oxopropyl)-cysteine with the urine. Therefore, we tested whether intestinal proteases can degrade a protein with acrylamide bound to cysteine residues. Furthermore we tested whether the product of this reaction, S-(3-amino-3-oxopropyl)-cysteine, can pass the intestinal barrier. Here we showed that S-(3-amino-3-oxopropyl)-cysteine is indeed a product of proteolytic degradation of acrylamide-treated proteins. Using Caco-2 cells as a gut model, we further showed that the non-protein amino acid S-(3-amino-3-oxopropyl)-cysteine is a substrate for the neutral and cationic amino acid transporter system. Hence we concluded that protein-bound acrylamide can be released in the intestine and that the resulting product S-(3-amino-3-oxopropyl)-cysteine is transported through the intestinal barrier and later excreted via the urine.

2005 ◽  
Vol 289 (4) ◽  
pp. H1381-H1390 ◽  
Author(s):  
Brett G. Zani ◽  
H. Glenn Bohlen

In cultured endothelial cells, 70–95% of extracellular l-arginine uptake has been attributed to the cationic amino acid transporter-1 protein (CAT-1). We tested the hypothesis that extracellular l-arginine entry into endothelial cells via CAT-1 plays a crucial role in endothelial nitric oxide (NO) production during in vivo conditions. Using l-lysine, the preferred amino acid transported by CAT-1, we competitively inhibited extracellular l-arginine transport into endothelial cells during conditions of NaCl hyperosmolarity, low oxygen, and flow increase. Our prior studies indicate that each of these perturbations causes NO-dependent vasodilation. The perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature. Suppression of extracellular l-arginine transport significantly and strongly inhibited increases in vascular [NO] and intestinal blood flow during NaCl hyperosmolarity, lowered oxygen tension, and increased flow. These results suggest that l-arginine from the extracellular space is accumulated by CAT-1. When CAT-1-mediated transport of extracellular l-arginine into endothelial cells was suppressed, the endothelial cell NO response to a wide range of physiological stimuli was strongly depressed.


2013 ◽  
Vol 288 (42) ◽  
pp. 30411-30419 ◽  
Author(s):  
Sarah R. Beyer ◽  
Robert T. Mallmann ◽  
Isabel Jaenecke ◽  
Alice Habermeier ◽  
Jean-Paul Boissel ◽  
...  

2007 ◽  
Vol 75 (6) ◽  
pp. 2802-2810 ◽  
Author(s):  
Nanchaya Wanasen ◽  
Carol L. MacLeod ◽  
Lesley G. Ellies ◽  
Lynn Soong

ABSTRACT Leishmania spp. are obligate intracellular parasites, requiring a suitable microenvironment for their growth within host cells. We previously reported that the growth of Leishmania amazonensis amastigotes in murine macrophages (Mφs) was enhanced in the presence of gamma interferon (IFN-γ), a Th1 cytokine normally associated with classical Mφ activation and killing of intracellular pathogens. In this study, we provided several lines of evidence suggesting that IFN-γ-mediated parasite growth enhancement was associated with l-arginine transport via mouse cationic amino acid transporter 2B (mCAT-2B). (i) mRNA expression of Slc7A2, the gene encoding for mCAT-2B, as well as l-arginine transport was increased in IFN-γ-treated Mφs. (ii) Supplementation of l-arginine in Mφ cultures increased parasite growth. (iii) Parasite growth enhancement in wild-type Mφs was inhibited in the presence of nonmetabolized l-arginine analogues. (iv) IFN-γ-mediated parasite growth was absent in Mφs derived from mCAT-2B-deficient mice. Although we detected a clear upregulation of mCAT-2B and l-arginine transport, no measurable iNOS or arginase activities were observed in IFN-γ-treated, infected Mφs. Together, these data suggest an involvement of a novel l-arginine usage independent of iNOS and arginase activities during IFN-γ-mediated parasite growth enhancement. A possible role of mCAT-2B in supplying l-arginine directly to the parasites for their proliferation is discussed.


2021 ◽  
Author(s):  
Ying Lu ◽  
Chongbo Hao ◽  
Shanshan Yu ◽  
Zuan Ma ◽  
Xuelian Fu ◽  
...  

Abstract Background: Abnormal proliferation of fibroblast-like synoviocytes (FLSs) in the synovial lining layer is the primary cause of synovial hyperplasia and joint destruction in rheumatoid arthritis (RA). Currently, the relationship between metabolic abnormalities and FLS proliferation is a new focus of investigation. However, little is known regarding the relationship between amino acid metabolism and RA. Methods: The concentrations of amino acids and cytokines in the synovial fluid of RA (n=9) and osteoarthritis (OA,n=9) were detected by LC-MS/MS and CBA assay, respectively. The mRNA and protein expression of CAT-1 were determined in FLSs isolated from RA and OA patients by real-time PCR and western blotting. MTT assay, cell cycle, apoptosis, invasion and cytokine secretion were determined in FLSs knocked down of CAT-1 using siRNA or treated with D-arginine under normoxic and hypoxic culture conditions. A mouse collagen-induced arthritis (CIA) model was applied to test the therapeutic potential of blocking the uptake of L-arginine in vivo.Results: L-arginine was upregulated in the synovial fluid of RA patients and was positively correlated with elevation of the cytokines IL-1β, IL-6 and IL-8. Further examination demonstrated that cationic amino acid transporter-1 (CAT-1) was the primary transporter for L-arginine and was overexpressed on RA FLSs compared to OA FLSs. Moreover, knockdown of CAT-1 using siRNA or inhibition of L-arginine uptake using D-arginine significantly suppressed L-arginine metabolism, cell proliferation, migration and cytokine secretion in RA FLSs under normoxic and hypoxic culture conditions in vitro but increased cell apoptosis in a dose-dependent manner. Meanwhile, in vivo assays revealed that an L-arginine-free diet or blocking the uptake of L-arginine using D-arginine suppressed arthritis progression in CIA mice. Conclusion: CAT-1 is upregulated and promotes FLS proliferation by taking up L-arginine, thereby promoting RA progression.


Author(s):  
Ran Li ◽  
Xiaocui Tang ◽  
Changqiong Xu ◽  
Yinrui Guo ◽  
Longkai Qi ◽  
...  

Background: Astroglioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for astroglioma. In the present study, the extract (L3) from Ganoderma Lucidum (G.lucidum) was found to inhibit the growth of astroglioma U87 cells and change the expression of circular RNAs (circRNAs). One of these, including the circular NF1-419 (circNF1-419), was of interest because NF1 gene is a classic tumor suppressor gene. Objective: The functional role of circ-NF1-419 in the inhibition of astroglioma cells remains unknown. This study focuses on the role of circNF1-419 in functional abnormalities of U87 astroglioma cells and aims to elaborate on its regulatory mechanism. Methods: The circNF1-419 overexpressing U87 (U87-NF1-419) cells were constructed. We generated U87-NF1-419 to evaluate the role of circNF1-419 on cell cycle, apoptosis, proliferation, tumor growth and metabolic regulation. Finally, we used docking screening to identify compounds in G. lucidum extracts that target circ-419. Results: U87-NF1-419 can promote cell apoptosis and regulate lipid metabolism through glycerophospholipid metabolism and retrograde endocannabinoid signaling. Further examinations revealed that the expression of metabolic regulators, such as L-type voltage-operated calcium channels (L-VOCC), phospholipase C-β3 (PLCβ3), Mucin1, cationic amino acid transporter 4 (CAT4), cationic amino acid transporter 1 (CAT1) and a kinase (PRKA) anchor protein 4 (AKAP4) was inhibited, while phosphatidylserine synthase 1 (PTDSS1) was enhanced in U87-NF1-419 cells. In vivo experiments showed that circNF1-419 inhibits tumor growth in BALB/C nude mice, and enhanced AKAP4 and PTDSS1 in tumor tissues. The virtual docking screening results supported that ganosporeric acid A, ganodermatriol, ganoderic acid B and α-D-Arabinofuranosyladenine in L3 could activate circNF1-419 in astroglioma treatment. Conclusion: This study indicated that circNF1-419 could be a therapeutic target for the clinical treatment of astroglioma. L3 from Ganoderma Lucidum (G.lucidum) could inhibit astroglioma growth by activating circNF1-419.


2020 ◽  
Vol 167 (6) ◽  
pp. 587-596 ◽  
Author(s):  
Kento Maeda ◽  
Masayoshi Tasaki ◽  
Yukio Ando ◽  
Kazuaki Ohtsubo

Abstract Maintenance of cell surface residency and function of glycoproteins by lectins are essential for regulating cellular functions. Galectins are β-galactoside-binding lectins and form a galectin-lattice, which regulates stability, clustering, membrane sub-domain localization and endocytosis of plasmalemmal glycoproteins. We have previously reported that galectin-2 (Gal-2) forms a complex with cationic amino acid transporter 3 (CAT3) in pancreatic β cells, although the biological significance of the molecular interaction between Gal-2 and CAT3 has not been elucidated. In this study, we demonstrated that the structure of N-glycan of CAT3 was either tetra- or tri-antennary branch structure carrying β-galactosides, which works as galectin-ligands. Indeed, CAT3 bound to Gal-2 using β-galactoside epitope. Moreover, the disruption of the glycan-mediated bindings between galectins and CAT3 significantly reduced cell surface expression levels of CAT3. The reduced cell surface residency of CAT3 attenuated the cellular arginine uptake activities and subsequently reduced nitric oxide production, and thus impaired the arginine-stimulated insulin secretion of pancreatic β cells. These results indicate that galectin-lattice stabilizes CAT3 by preventing endocytosis to sustain the arginine-stimulated insulin secretion of pancreatic β cells. This provides a novel cell biological insight into the endocrinological mechanism of nutrition metabolism and homeostasis.


2020 ◽  
Vol 133 (20) ◽  
pp. jcs249037
Author(s):  
Doris Lou Demy ◽  
Mireille Carrère ◽  
Ramil Noche ◽  
Muriel Tauzin ◽  
Marion Le Bris ◽  
...  

ABSTRACTMost tissues harbor a substantial population of resident macrophages. Here, we elucidate a functional link between the Slc7a7 cationic amino acid transporter and tissue macrophages. We identified a mutant zebrafish devoid of microglia due to a mutation in the slc7a7 gene. We found that in Slc7a7-deficient larvae, macrophages do enter the retina and brain to become microglia, but then die during the developmental wave of neuronal apoptosis, which triggers intense efferocytic work from them. A similar macrophage demise occurs in other tissues, at stages where macrophages have to engulf many cell corpses, whether due to developmental or experimentally triggered cell death. We found that Slc7a7 is the main cationic amino acid transporter expressed in macrophages of zebrafish larvae, and that its expression is induced in tissue macrophages within 1–2 h upon efferocytosis. Our data indicate that Slc7a7 is vital not only for microglia but also for any steadily efferocytic tissue macrophages, and that slc7a7 gene induction is one of the adaptive responses that allow them to cope with the catabolism of numerous dead cells without compromising their own viability.


Amino Acids ◽  
2015 ◽  
Vol 47 (12) ◽  
pp. 2647-2658 ◽  
Author(s):  
Caroline Nava ◽  
Johanna Rupp ◽  
Jean-Paul Boissel ◽  
Cyril Mignot ◽  
Agnès Rastetter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document