Phenolic Compounds from the Mongolian Medicinal Plant Scorzonera radiata

2012 ◽  
Vol 67 (3-4) ◽  
pp. 135-143 ◽  
Author(s):  
Yao Wang ◽  
Victor Wray ◽  
Nanzad Tsevegsuren ◽  
Wenhan Lin ◽  
Peter Proksch

Chromatographic separation of a crude extract obtained from aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded fifteen natural compounds, including two new flavonoids and one new quinic acid congener, as well as four flavones and eight quinic acid derivatives, all of which are known natural compounds. The structures of the isolated compounds were elucidated on the basis of NMR (1H, 13C, COSY, HMBC, ROESY, and TOCSY) and mass spectrometric data. The antioxidant activities of the quinic acid derivatives were evaluated by the DPPH assay

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 514 ◽  
Author(s):  
Nabila Souilah ◽  
Zain Ullah ◽  
Hamdi Bendif ◽  
Kamel Medjroubi ◽  
Tahar Hazmoune ◽  
...  

Hypochaeris laevigata var. hipponensis (Asteraceae) is an endemic plant from Algeria. In the current study, we analyzed for the first time its chemical composition, especially phenolic constituents of dichloromethane (DCM), ethyl acetate (EA), and n-butanol (BuOH) fractionsof the aerial parts of Hypochaeris laevigata var. hipponensis by liquid chromatography-mass spectrometry (LC-MS/MS). The number of phenolic compounds detected in DCM, EA, and BuOH fractions were found to be 9, 20, and 15, respectively. More specifically, 12 phenolic acids were detected. Among them, quinic acid, chlorogenic acid, and caffeic acid were the most abundant ones. Meanwhile, only seven flavonoids were detected. Among them, rutin, apigetrin, and isoquercitrin were the major ones. We also determined the total phenolic and flavonoid contents, and fraction EA showed the highest values, followed by BuOH, and DCM fractions. Furthermore, the antioxidant action was dictated by five methods and the tested plant fractions demonstrated a noteworthy antioxidant action.


2014 ◽  
Vol 12 ◽  
pp. 78-84
Author(s):  
N Tsevegsuren ◽  
P Proksch ◽  
Y Wang ◽  
G Davaakhuu

Chromatographic separation of the crude extract obtained from the aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded five new dihydrostilbenes [4], two new flavonoids, one new quinic acid derivative, as well as twenty known compounds including eight quinic acid derivatives, four flavonoids, two coumarins, five simple benzoic acids, and one monoterpene glycoside. We present here results on isolation and structural identification some active phenolic compounds from the Scorzonera radiata - eight quinic acid derivatives (quinic acid, 4,5-dicaffeoylquinic acid, 4,5-dicaffeoyl-epi-quinic acid, 3,5-dicaffeoylquinic acid, 3,5-dicaffeoyl-epi-quinic acid, chlorogenic acid, 5-p-coumaroylquinic acid (trans), 5-p-coumaroylquinic acid (cis)). Quinic acid derivatives exhibited antioxidative activity.DOI: http://dx.doi.org/10.5564/mjc.v12i0.177 Mongolian Journal of Chemistry Vol.12 2011: 78-84


2014 ◽  
Vol 42 (8) ◽  
pp. 1099-1103 ◽  
Author(s):  
Yi CHEN ◽  
Fei TANG ◽  
Tie-Gang LI ◽  
Jiu-Ming HE ◽  
Zeper ABLIZ ◽  
...  

2019 ◽  
Vol 19 (6) ◽  
pp. 3645-3672 ◽  
Author(s):  
Mikko Äijälä ◽  
Kaspar R. Daellenbach ◽  
Francesco Canonaco ◽  
Liine Heikkinen ◽  
Heikki Junninen ◽  
...  

Abstract. The interactions between organic and inorganic aerosol chemical components are integral to understanding and modelling climate and health-relevant aerosol physicochemical properties, such as volatility, hygroscopicity, light scattering and toxicity. This study presents a synthesis analysis for eight data sets, of non-refractory aerosol composition, measured at a boreal forest site. The measurements, performed with an aerosol mass spectrometer, cover in total around 9 months over the course of 3 years. In our statistical analysis, we use the complete organic and inorganic unit-resolution mass spectra, as opposed to the more common approach of only including the organic fraction. The analysis is based on iterative, combined use of (1) data reduction, (2) classification and (3) scaling tools, producing a data-driven chemical mass balance type of model capable of describing site-specific aerosol composition. The receptor model we constructed was able to explain 83±8 % of variation in data, which increased to 96±3 % when signals from low signal-to-noise variables were not considered. The resulting interpretation of an extensive set of aerosol mass spectrometric data infers seven distinct aerosol chemical components for a rural boreal forest site: ammonium sulfate (35±7 % of mass), low and semi-volatile oxidised organic aerosols (27±8 % and 12±7 %), biomass burning organic aerosol (11±7 %), a nitrate-containing organic aerosol type (7±2 %), ammonium nitrate (5±2 %), and hydrocarbon-like organic aerosol (3±1 %). Some of the additionally observed, rare outlier aerosol types likely emerge due to surface ionisation effects and likely represent amine compounds from an unknown source and alkaline metals from emissions of a nearby district heating plant. Compared to traditional, ion-balance-based inorganics apportionment schemes for aerosol mass spectrometer data, our statistics-based method provides an improved, more robust approach, yielding readily useful information for the modelling of submicron atmospheric aerosols physical and chemical properties. The results also shed light on the division between organic and inorganic aerosol types and dynamics of salt formation in aerosol. Equally importantly, the combined methodology exemplifies an iterative analysis, using consequent analysis steps by a combination of statistical methods. Such an approach offers new ways to home in on physicochemically sensible solutions with minimal need for a priori information or analyst interference. We therefore suggest that similar statistics-based approaches offer significant potential for un- or semi-supervised machine-learning applications in future analyses of aerosol mass spectrometric data.


Sign in / Sign up

Export Citation Format

Share Document