A DFT Study of CO and NO Adsorptions on AlN-, AlP-, and ZnO-doped Graphene Nanosheets

2016 ◽  
Vol 230 (2) ◽  
Author(s):  
Niwat Promthong ◽  
Nadtanet Nunthaboot ◽  
Wanno Banchob

AbstractDensity functional theory calculations were performed to investigate the adsorption abilities of carbon monoxide (CO) and nitrogen monoxide (NO) gas molecules onto pristine graphene nanosheet (GNS), and AlN-, AlP-, and ZnO-doped GNSs. The co-doping of AlN, AlP, and ZnO onto GNS can improve the CO and NO adsorption abilities of GNS. The gas adsorption abilities on the pristine and co-doped GNSs were determined to be, in decreasing order: ZnO-GNS ∼ AlP-GNS > AlN-GNS > pristine GNSs and AlP-GNS > AlN-GNS > ZnO-GNS > pristine GNSs for the adsorptions of CO and NO, respectively. These newly developed co-doped GNSs could be candidates for CO and NO gas storages. The adsorption geometries, adsorption energies, density of states, and charge transfers were also reported.

RSC Advances ◽  
2015 ◽  
Vol 5 (69) ◽  
pp. 55762-55773 ◽  
Author(s):  
Saif Ullah ◽  
Akhtar Hussain ◽  
WaqarAdil Syed ◽  
Muhammad Adnan Saqlain ◽  
Idrees Ahmad ◽  
...  

First-principles density functional theory (DFT) calculations were carried out to investigate the structural and electronic properties of beryllium (Be) doped and, Be with boron (B) co-doped graphene systems.


2017 ◽  
Vol 41 (18) ◽  
pp. 9815-9825 ◽  
Author(s):  
Mehdi D. Esrafili ◽  
Nasibeh Saeidi ◽  
Leila Dinparast

The catalytic activities of Pt-, Pd-, and Ni-doped graphene nanosheets for the oxidation of ethylene to ethylene oxide by N2O molecule are compared using the density functional theory calculations.


2020 ◽  
Vol 978 ◽  
pp. 369-376
Author(s):  
Deepak K. Gorai ◽  
T.K. Kundu

Elements doping is a powerful way to alter the electronic structure and enhancing the photo catalytic activity of materials by relaxing the surrounding chemical bonds and forming new chemical bond. In this work, we have performed, the first principle density functional theory calculations to investigate the geometric, electronic and optical properties of pristine, Na-doped and P-doped as well as Na and P (Na/P) co-doped heptazine based monolayer graphitic carbon nitride (g-C3N4). The co-doping process results in significantly narrow band gap of g-C3N4. The optical absorption shows better visible-light response compare to pristine g-C3N4. After doping the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) show strong delocalization and indicates photo generated electron/hole (e-/h+) pair disunion abilities of doped systems are superior than pristine heptazine based monolayer g-C3N4. Thus the co-doping with Na and P elements is an effective technique to boost the photocatalytic performance of heptazine based monolayer g-C3N4.


2009 ◽  
Vol 08 (01n02) ◽  
pp. 5-8 ◽  
Author(s):  
YONG-HUI ZHANG ◽  
KAI-GE ZHOU ◽  
KE-FENG XIE ◽  
CAI-HONG LIU ◽  
HAO-LI ZHANG ◽  
...  

The adsorption of cytosine on graphene surface is studied using density functional theory with local density approximation. The cytosine is physisorbed onto graphene through π–π interaction, with a binding energy around -0.39 eV. Due to the weak interaction, the electronic properties of graphene show little change upon adsorption. The cytosine/graphene interaction can be strongly enhanced by introducing metal atoms. The binding energies increase to -0.60 and -2.31 eV in the presence of Li and Co atoms, respectively. The transport behavior of an electric sensor based on Co -doped graphene shows a sensitivity one order of magnitude higher than that of a similar device using pristine graphene. This work reveals that the sensitivity of graphene-based bio-sensors could be drastically improved by introducing appropriate metal atoms.


Graphene, an interesting 2D system has a rare electronic structure of two inverted Dirac cones touching at a single point, with great electron mobility and promising microelectronics applications. In the present article, a theoretical investigation has been performed on the structural, electronic, and magnetic properties of pristine graphene nanosheet and also the effect of 3d transition metal (TM) co-doped in graphene nanosheet within the density functional theory framework. 3d TM is categorized into two groups: Cr- group (Cr-Cr, Cr-Mn, and Cr-Fe) and Ni-group (Ni-Cr, Ni-Ti, Ni-Mn). After co-doping TM atoms on graphene, it still holds its planar shape which refers to the stability of these co-doped graphene nanosheets. This is also confirmed by the increasing bond length of carbon and TM atoms on graphene nanosheets. Highest zero-point energies have been found of -12049.24eV and -10936.87eV respectively for Cr-Cr and Ni-Cr co-doped graphene nanosheet. According to Mulliken's charge and electron density differences, all the TM atoms can act as electron donors while the graphene nanosheet is electron acceptor. All the TMs co-doped graphene nanosheet show metallic behavior in terms of band structures and DOS plots except Ti-Ni which has shown a little band gap. In terms of electronic properties, Cr-Cr and Ni-Cr co-doped graphene nanosheets are found most stable among the other studied systems and they can exhibit magnetic behavior as there is a variation in their up and down spin as shown in spin polarized DOS. That’s why they are beneficial to the application of various magnetic devices as well as sectors. Besides Cr-group co-doped graphene nanosheet can exhibit better magnetic properties than Ni-group.


RSC Advances ◽  
2016 ◽  
Vol 6 (91) ◽  
pp. 88392-88402 ◽  
Author(s):  
O. Olaniyan ◽  
R. E. Mapasha ◽  
D. Y. Momodu ◽  
M. J. Madito ◽  
A. A. Kahleed ◽  
...  

First principles density functional theory calculations have been performed to explore the stability, structural and electronic properties of Be and S co-doped graphene sheets.


2008 ◽  
Vol 07 (04) ◽  
pp. 669-679 ◽  
Author(s):  
JIAN CHEN ◽  
KAI TAN ◽  
MENG-HAI LIN

The adsorption of nitrogen monoxide NO with charged and neutral [Formula: see text] clusters at atop, bridge, and threefold hollow sites had been investigated by density functional theory calculations. The results showed that rhodium clusters had strong orbital interactions with NO and formed the complex [ Rh n NO ]-/0/+. The stretching vibrational frequencies of the N–O bonds changed with the different adsorption sites and clusters sizes. The interactions between rhodium clusters and NO molecular could be described through the donation and back-donation of their frontier orbitals. The more back donation from Rh to NO , the weaker the N–O bonds, exhibiting that the lengthening of the N–O bond length and the lowering of its vibrational frequency. In general, the donation and back-donation interactions followed the tendencies: anionic > neutral > cationic, big size > small size, threefold hollow site > bridge site > atop site.


2018 ◽  
Vol 32 (14) ◽  
pp. 1850178 ◽  
Author(s):  
Xuefeng Lu ◽  
Xu Gao ◽  
Junqiang Ren ◽  
Cuixia Li ◽  
Xin Guo ◽  
...  

Bandgap tailoring of [Formula: see text]-Si3N4 is performed by single and co-doping by using density functional theory (DFT) of PBE functional and plane-wave pseudopotential method. The results reveal that a direct bandgap transfers into an indirect one when single-doped with As element. Also, a considerate decrease of bandgap to 0.221 eV and 0.315 eV is present for Al–P and As–P co-doped systems, respectively, exhibiting a representative semiconductor property that is characteristic for a narrower bandgap. Compared with other doped systems, Al-doped system with formation energy of 2.67 eV is present for a more stable structure. From charge density difference (CDD) maps, it is found that the blue area between co-doped atoms increases, illustrating an enhancement of covalent property for Al–P and Al–As bonds. Moreover, a slightly obvious “Blue shift” phenomenon can be obtained in Al, Al–P and Al–As doped systems, indicating an enhanced capacity of responses to light, which contributes to the insight for broader applications with regard to photoelectric devices.


2019 ◽  
Vol 43 (48) ◽  
pp. 19308-19317 ◽  
Author(s):  
Zhao Liang ◽  
Chao Liu ◽  
Mingwei Chen ◽  
Xiaopeng Qi ◽  
Pramod Kumar U. ◽  
...  

DFT calculations confirmed that the P–N coupled site changed the ORR pathway and improved the catalytic activity compared with single doping.


2017 ◽  
Vol 5 (5) ◽  
pp. 2110-2114 ◽  
Author(s):  
G. R. Berdiyorov ◽  
M. Neek-Amal ◽  
I. A. Hussein ◽  
M. E. Madjet ◽  
F. M. Peeters

Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity and is highly selective towards CO2 against other major greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document