scholarly journals Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects

2018 ◽  
Vol 232 (9-11) ◽  
pp. 1431-1441 ◽  
Author(s):  
Dmitry V. Guzatov ◽  
Sergey V. Gaponenko ◽  
Hilmi V. Demir

Abstract Fluorescence enhancement by metal nanostructures which is sensitive to refractive index n of an ambient medium is suggested as an operation principle of a novel refractive index sensor for liquids. Calculations are made for spherical and spheroidal Ag particles, and potential feasibility of sensitivity of the order of Δn=10−4 is demonstrated. Sensors of this type can be made fully colloidal with metal bodies deposited on a substrate or comprising a metal layer covering colloidal assembly of dielectric particles to serve as a test strip as well as placed on a fiber tip end to get local probing of refractive index in the tip-enhanced refractometry mode. Colloidal core-shell semiconductor nanocrystals may become the best candidates for this type of sensors whereas molecular probes may be affected by chemical properties of tested liquids.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).


2016 ◽  
Vol 30 (04) ◽  
pp. 1650030 ◽  
Author(s):  
Ying Chen ◽  
Jing Dong ◽  
Teng Liu ◽  
Qiguang Zhu ◽  
Weidong Chen

A photonic crystal’s refractive index sensor is proposed based on the photonic crystal (PC) optical properties and the surface wave resonance principle. The optical Tamm state existing at the interface between one-dimensional (1D) PCs and the metal layer can overcome the disadvantage of the surface plasmon resonance (SPR) sensor in which the incident light can only be TM polarized light. The resonant wavelength can be changed by adjusting the optical parameters of the PC. Through coating the metal surface with graphene, the resolution and sensitivity of the sensor can be improved obviously. The relationship model between the graphene parameters and the reflectivity is established by analyzing the reflective properties of the graphene. In the numerical simulation, the graphene layer is optimized to improve the refractive index sensing properties. The numerical simulation results show that the quality factor ([Formula: see text] value) can attain to 1418.2 and the sensitivity is about 1178.6 nm RIU[Formula: see text], which can demonstrate the effectiveness of the senor structure and provide some theoretical references for the design of the refractive index sensors with high [Formula: see text] value and sensitivity.


2021 ◽  
Vol 1879 (3) ◽  
pp. 032077
Author(s):  
Maher Khaleel Ibrahim ◽  
Shehab A Kadhim ◽  
Nabeil Ibrahim Fawaz

Sign in / Sign up

Export Citation Format

Share Document