The Synergistic Impact of the Aqueous Valerian Extract and Zinc Ions for the Corrosion Protection of Mild Steel in Acidic Environment

2019 ◽  
Vol 233 (12) ◽  
pp. 1713-1739
Author(s):  
Emad E. El-Katori ◽  
A.S. Fouda ◽  
Rahma R. Mohamed

AbstractHerein, the corrosion inhibition performance of mild steel (MS) in an acidic environment (1.0 M HCl) by the valerian extract has been studied via weight loss method (WL), potentiodynamic polarization (PP), electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. The results illustrated that the inhibition efficiency, raised by the rise of the extract concentrations. The inhibitory mechanism depended on the creation of a stable plant extract-complex on the mild steel surface. Polarization studies confirmed that the extract behaved as a mixed type inhibitor. The corrosion inhibition was supposed to exist via adsorption of the main components of the valerian extract. Attenuated total reflection-infrared spectroscopy (ATR-IR), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to investigate the change in the surface morphology and confirmed the corrosion inhibition mechanism. The complete study confirmed that the efficiency of the valerian extract as a safe, eco-friendly and exchange corrosion inhibition for mild steel in an acidic environment.

Chemistry ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 900-917
Author(s):  
George M. Tsoeunyane ◽  
Elizabeth M. Makhatha

The synthesis and corrosion inhibition performance of poly(butylene-succinate)-L-proline (PBSLP) prepared by solution polymerization are reported. PBSLP was characterized by FTIR, XRD, and SEM/energy dispersive X-ray (EDX). PBSLP was used to protect mild steel in 1 M hydrochloric acid. An SEM and an atomic force microscope (AFM) were used to characterize the surface morphology of the mild steel coupons. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to characterize the inhibition mechanism of PBSLP, and the inhibitor was a mixed-type corrosion inhibitor with a maximum corrosion inhibition efficiency of 93.0%. Adsorption studies revealed the adsorption of PBSLP to be a monolayer process and therefore, obeyed the Langmuir isotherm model.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Glory Tharial Xavier ◽  
Brindha Thirumalairaj ◽  
Mallika Jaganathan

The corrosion inhibition of mild steel in 1 N sulphuric acid solution by 2,6-diphenylpiperidin-4-ones with various substituents at 3- and 3,5-positions (01–06) has been tested by weight loss, potentiodynamic polarization, electrochemical impedance spectroscopic methods, and FTIR and UV absorption spectra. The surface morphology of the mild steel specimen has been analyzed by SEM. The effect of temperature (300 to 323 ± 1 K) on the corrosion behavior of mild steel in the presence of the inhibitors (01–06) was studied using weight loss techniques. The effect of anions (Cl−, Br−, and I−) on the corrosion behavior of mild steel in the presence of the same inhibitors was also studied by weight loss method and the synergism parameters were calculated. The adsorption characteristics of the inhibitors have been determined from the results.


2021 ◽  
Vol 33 (9) ◽  
pp. 2219-2228
Author(s):  
S. Karthikeyan ◽  
S.S. Syed Abuthahir ◽  
A. Samsath Begum ◽  
K. Vijaya

In aqueous solution of 0.5M H2SO4, the Annona Squamosa extract was systematically analyzed to ensure its inhibition mechanism by using potentiodynamics polarization, the weight loss method, and electrochemical impedance spectroscopy (EIS) and its inhibitory effect on mild steel corrosion. For mild steel corrosion in 0.5 M H2SO4 solution, its inhibition efficiency increases and decreases with an increase in its concentration and temperature, respectively. Potentiodynamic polarization analyses revealed that the Annona Squamosa behaves as a cathodic inhibitor. In presence of Annona Squamosa extract in 0.5 M H2SO4 solution, an increase in the activation energy of corrosion leads to a decrease in the rate of mild steel corrosion. On mild steel surfaces, the adsorption behaviour of the extract conformed to the Temkin isotherm, Langmuir isotherm and Arrhenius equation. The EIS results were correlated with the polarization findings. According to atomic force microscopy (AFM) and scanning electron microscopy (SEM), the inhibition of mild steel corrosion proceeds through the adsorption of the extract on the mild steel surface.


2016 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Maria Erna ◽  
Emriadi Emriadi ◽  
Admin Alif ◽  
Syukri Arief

The thermodynamic properties and characterizations of corrosion inhibition of chitosan nano-particles on the surface of mild steel in peat water media had been studied using weight loss method at temperatures of 30 - 50 <sup>o</sup>C. Steel surfaces were characterized by FT-IR spectra and SEM-EDS morphology photos. The research found that the value of DG<sup>o </sup>approaching -40 kJmol<sup>-</sup><sup>1</sup>. The negative value of Gibbs free energy shows that the adsorption of inhibitor molecules on the surface of mild steel was achemisorption and it occurred spontaneously. Meanwhile, the values of DH<sup>o </sup>is also negative confirming that the adsoprtion of inhibitor molecules is an exothermic process. The value of DS<sup>o </sup>obtained is positive, it indicates hat the inhibitor molecules were adsorbed spontaneously on the mild steel surface. The analysis on mild steel surfaces hows that the nano-particle chitosan was adsorbed on the steel surface to form the complex compounds.


2010 ◽  
Vol 7 (3) ◽  
pp. 942-946 ◽  
Author(s):  
B. Anand ◽  
V. Balasubramanian

The inhibition of corrosion of mild steel usingPiper nigrumL in different acid medium by weight loss method was investigated. The corrosion inhibition was studied in hydrochloric acid and sulphuric acid by weight loss method at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of this compound was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior ofPiper nigrumL is greater in sulphuric acid than hydrochloric acid. So,Piper nigrumL can be used as a good inhibitor for preventing mild steel material.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
N. Zulfareen ◽  
T. Venugopal ◽  
K. Kannan

The corrosion inhibition effect of N-(4-((4-Benzhydryl piperazin-1-yl) methyl Carbamoyl) Phenyl) Furan-2-Carboxamide (BFC) on brass in 1M HCl has been investigated using weight loss method, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The result reveals that BFC acts as a mixed type corrosion inhibitor with more pronounced effect on anodic domain and the inhibition efficiency of BFC increases with increase in temperature ranges from 30°C to 60°C. AC impedance implies thatRctvalue of BFC increases with increase in concentration. CV indicates that the addition of inhibitor controls the oxidation of the copper on the brass metal. The structural confirmation of BFC was carried out by the spectral studies like FT-IR,1H NMR,13C NMR, and the molecular weight was confirmed by LC-MS. Surface characterization of brass with BFC was analysed using scanning electron microscope (SEM). Quantum chemical parameter was used to calculate the electronic properties of BFC in order to confirm the correlation between the inhibitor effect and molecular structure of BFC. BFC has more negative charge on nitrogen and oxygen atom, which facilitates the adsorption of BFC on the surface of brass.


2019 ◽  
Vol 233 (11) ◽  
pp. 1553-1569 ◽  
Author(s):  
Rola N. Tabesh ◽  
Ashraf Moustafa Abdel-Gaber ◽  
Hassan H. Hammud ◽  
Rami Al-Oweini

Abstract The ligands 1,10-phenanthroline, (P) and para-aminobenzoate, (B); as well as their corresponding MnPB complex [bis-(dimanganese di-μ-paraaminobenzoate dichloro diphenanthroline)] have been investigated as inhibitors of mild steel corrosion in H2SO4 (0.5 M) solutions via potentiodynamic and electrochemical impedance spectroscopy techniques. Stability of the prepared complex was examined by UV-visible spectroscopy. The corrosion inhibition, thermodynamics, and adsorptive properties obtained have shown that MnPB complex has remarkable effects in the acidic solutions. Theoretical fitting of different adsorption isotherms such as Langmuir, Flory–Huggins, and the kinetic-thermodynamic models were tested and the thermodynamic activation parameters were calculated. The data revealed that the corrosion inhibition mechanism of mild steel in acidic solutions by the MnPB complex goes via physicochemical adsorption.


Author(s):  
Moussa Ouakki ◽  
Mouhsine Galai ◽  
Mohammed Cherkaoui ◽  
Mohamed Ebn Touhami ◽  
E. H. Rifi ◽  
...  

The corrosion inhibition of mild steel in hydrochloric, sulfuric, and phosphoric acids solutions containing a mineral compound-based phosphate (apatite) was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. Potentio-dynamic polarization measurements reveal that the inhibition efficiency increased with the concentration of the apatite, which appears to be a cathodic type inhibitor in the three mediums. Electrochemical impedance spectroscopy confirms this result; indeed, the transfer resistance increases with apatite concentration. The authors note that the double layer capacitance decreases simultaneously suggesting the formation of an adsorbed layer on the mild steel surface. The inhibition mechanism has been elucidated by a thermodynamic study, which showed that the film was formed by physi-sorption. The adsorption model obeys to the Langmuir adsorption isotherm. The parameters of activation energy were evaluated and discussed.


2018 ◽  
Vol 6 (2) ◽  
pp. 157
Author(s):  
Jisha M ◽  
Zeinul Hukuman N. H ◽  
Leena P

Pogostemon quadrifolius methanolic stem extract (PQMSE) has been investigated as non toxic green corrosion inhibitor for mild steel in 1 M HCl. Corrosion rates were evaluated at 303 K, 313 K and 323 K by weight loss method at varying inhibitor concentrations. Using electrochemical impedence spectroscopy (EIS) and polarisation techniques, corrosion studies were done at 303 K in various inhibitor concentrations. Adsorption studies were also conducted to study the mechanism of corrosion inhibition. Scanning electron microscopy (SEM) and Fourier – transform infrared (FT-IR) spectroscopy were used to study the surface morphology of mild steel. Electrochemical studies reveal that PQMSE exhibit excellent corrosion inhibition efficiency and it function as a mixed type of inhibitor at 303 K. The surface interaction of PQMSE on mild steel in 1 M HCl was obeying Langmiur adsorption isotherm at all studied temperatures.


2019 ◽  
Vol 66 (5) ◽  
pp. 583-594
Author(s):  
Esma Sezer ◽  
İpek Öztürk

Purpose Tannic acid (TA) is one of the green corrosion inhibitors for mild steel; its anti-corrosive performance in alkaline water on mild steel when it is used together with polyaspartic acid (PASA) still has not been investigated. The purpose of this study is to develop an effective, biodegradable and environment-friendly novel corrosion inhibitor based on TA and PASA as an alternative to the conventional inorganic inhibitors for mild steel in decarbonised water, which is common in cooling systems. Design/methodology/approach Corrosion inhibition mechanism is investigated by electrochemical techniques such as polarisation measurements and electrochemical impedance spectroscopy, and results were evaluated to determine the optimum inhibitor concentration for industrial applications. Additionally, practice-like conditions are carried out in pilot plant studies to simulate the conditions in cooling systems. Thus, the efficiencies of the inhibitors are evaluated through both weight loss and linear polarisation resistance measurements. Moreover, the corrosion product is characterised by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR) analysis. Findings TA shows high inhibition efficiency especially towards pitting corrosion for mild steel in decarbonised water. PASA addition in the cooling systems improves the inhibition efficiency of TA, and at lower concentrations of TA + PASA, it is possible to obtained better inhibition efficiency than TA alone at higher inhibitor amounts, which is essential in economic and environmental aspect. Originality/value A blended inhibitor program including TA and PASA with suggested concentrations in this work can be used as an environmental friendly treatment concept for the mild steel corrosion inhibition at cooling systems.


Sign in / Sign up

Export Citation Format

Share Document