ACUTE EFFECTS OF STATIC STRETCHING ON PEAK TORQUE AND MEAN POWER OUTPUT IN NATIONAL COLLEGIATE ATHLETIC ASSOCIATION DIVISION I WOMENʼS BASKETBALL PLAYERS

2006 ◽  
Vol 20 (4) ◽  
pp. 778-782 ◽  
Author(s):  
ALISON D. EGAN ◽  
JOEL T. CRAMER ◽  
LAURIE L. MASSEY ◽  
SARAH M. MAREK
2004 ◽  
Vol 93 (5-6) ◽  
pp. 530-539 ◽  
Author(s):  
J. T. Cramer ◽  
T. J. Housh ◽  
J. P. Weir ◽  
G. O. Johnson ◽  
J. W. Coburn ◽  
...  

Author(s):  
Amanda M. Dumar ◽  
Anna F. Huntington ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Tyler D. Williams ◽  
...  

Diurnal fluctuations in power output have been well established with power loss typically occurring in morning (AM) times. Beetroot juice (BRJ) is a source of dietary nitrate that possess ergogenic properties, but it is unknown if ingestion can mitigate performance decrements in the morning. The purpose of this study was to examine the effects of acute BRJ supplementation on diurnal fluctuations in anaerobic performance in trained sprinters. Male Division 1 National Collegiate Athletic Association (NCAA) sprinters (n = 10) participated. In a double-blinded crossover study design, participants completed three counterbalanced exercise trials under different conditions: Morning–placebo (8:00 HR, AM-PL), Morning–BRJ (8:00 HR, AM-BRJ), and Afternoon–no supplement (15:00 HR, PM). For each trial, participants completed 3 × 15 s Wingate anaerobic tests separated by 2 min of rest. Each trial was separated by a 72 h washout period. Mean power output (p = 0.043), anaerobic capacity (p = 0.023), and total work (p = 0.026) were significantly lower with the AM-PL condition compared to PM. However, BRJ supplementation prevented AM losses of mean power output (p = 0.994), anaerobic capacity (p = 0.941), and total work (p = 0.933) in the AM-BRJ compared to the PM condition. Rate of perceived exertion was not significantly different between any conditions (p = 0.516). Heart rate was significantly lower during the AM-BRJ condition compared to AM-PL (p = 0.030) and PM (p < 0.001). Findings suggest anaerobic capacity suffers during AM versus PM times in trained sprinters, but BRJ ingestion abolishes AM-associated decrements in performance.


2021 ◽  
Vol 9 (6) ◽  
pp. 232596712110152
Author(s):  
Rafael Sanchez ◽  
Blake H. Hodgens ◽  
Joseph S. Geller ◽  
Samuel Huntley ◽  
Jonathan Kaplan ◽  
...  

Background: Achilles tendon (AT) ruptures are devastating injuries that are highly prevalent among athletes. Despite our understanding of the effect of AT rupture and in particular its relationship to basketball, no study has examined the effects of AT rupture and repair on performance metrics in collegiate basketball players. Purpose: To evaluate the effect of AT rupture and subsequent surgical repair on performance metrics in National Collegiate Athletic Association (NCAA) Division I basketball players who return to play after injury. Study Design: Descriptive epidemiology study. Methods: NCAA Division I basketball players who sustained an AT rupture and underwent subsequent surgical repair between 2000 and 2019 were identified by systematically evaluating individual injury reports from databases comprising NCAA career statistics and individual school statistics; 65 male and 41 female players were identified. Athletes were included if they participated in at least one-half of the games of 1 collegiate season before tearing the AT and at least 1 season after operative repair. A total of 50 male and 30 female athletes were included. Each injured athlete was matched to a healthy control by conference, position, starter status at time of injury, class year, and number of games played. Matched controls were healthy players and experienced no significant injuries during their NCAA careers. Results: After AT repair, male athletes had significantly more minutes per game, points per game, and compared with before injury. Total blocks significantly decreased after injury. Female athletes scored significantly more points per game but demonstrated a significantly lower 3-point shooting percentage after return to play. Despite undergoing AT rupture and repair, 14% of male players played in the National Basketball Association, and 20% of injured female athletes played in the Women’s National Basketball Association. Conclusion: After returning to play, men demonstrated a significant drop-off in performance only in regard to total blocks. Female athletes after AT repair demonstrated a significant improvement in points per game but had a significant drop-off in 3-point shooting percentage.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Paweł Korman ◽  
Anna Straburzyńska-Lupa ◽  
Radosław Rutkowski ◽  
Jakub Gruszczyński ◽  
Jacek Lewandowski ◽  
...  

Objectives. The effects of Kinesio Taping (KT) on muscular performance remain largely unclear. This study aimed to investigate the acute effects of KT on the maximum concentric and eccentric quadriceps isokinetic strength.Study Design. This is a single-blinded, placebo crossover, repeated measures study.Methods. Maximum isokinetic concentric/eccentric extension torque, work, and power were assessed by an isokinetic dynamometer without taping (NT) and with KT or placebo taping (PT) in 17 healthy young men. Repeated measures one-way analysis of variance (ANOVA) was used for statistical analyses.Results. Testing concentric contractions at 60°/s or 180°/s isokinetic speed, no significant differences in peak torque (Nm), total work (J), or mean power (W) were noted among the application modes under different conditions. Testing eccentric contractions at 30°/s or 60°/s isokinetic speed, no significant differences in mentioned parameters were noted, respectively. KT on the quadriceps neither decreased nor increased muscle strength in the participants.Conclusion. KT application onto the skin overlying the quadriceps muscle does not enhance the strength or power of knee extensors in healthy men.


Author(s):  
Bernhard Prinz ◽  
Dieter Simon ◽  
Harald Tschan ◽  
Alfred Nimmerichter

Purpose: To determine aerobic and anaerobic demands of mountain bike cross-country racing. Methods: Twelve elite cyclists (7 males;  = 73.8 [2.6] mL·min-1·kg−1, maximal aerobic power [MAP] = 370 [26] W, 5.7 [0.4] W·kg−1, and 5 females;  = 67.3 [2.9] mL·min−1·kg−1, MAP = 261 [17] W, 5.0 [0.1] W·kg−1) participated over 4 seasons at several (119) international and national races and performed laboratory tests regularly to assess their aerobic and anaerobic performance. Power output, heart rate, and cadence were recorded throughout the races. Results: The mean race time was 79 (12) minutes performed at a mean power output of 3.8 (0.4) W·kg−1; 70% (7%) MAP (3.9 [0.4] W·kg−1 and 3.6 [0.4] W·kg−1 for males and females, respectively) with a cadence of 64 (5) rev·min−1 (including nonpedaling periods). Time spent in intensity zones 1 to 4 (below MAP) were 28% (4%), 18% (8%), 12% (2%), and 13% (3%), respectively; 30% (9%) was spent in zone 5 (above MAP). The number of efforts above MAP was 334 (84), which had a mean duration of 4.3 (1.1) seconds, separated by 10.9 (3) seconds with a mean power output of 7.3 (0.6) W·kg−1 (135% [9%] MAP). Conclusions: These findings highlight the importance of the anaerobic energy system and the interaction between anaerobic and aerobic energy systems. Therefore, the ability to perform numerous efforts above MAP and a high aerobic capacity are essential to be competitive in mountain bike cross-country.


2019 ◽  
Vol 14 (10) ◽  
pp. 1382-1387 ◽  
Author(s):  
Paul F.J. Merkes ◽  
Paolo Menaspà ◽  
Chris R. Abbiss

Purpose: To determine the validity of the Velocomp PowerPod power meter in comparison with the Verve Cycling InfoCrank power meter. Methods: This research involved 2 separate studies. In study 1, 12 recreational male road cyclists completed 7 maximal cycling efforts of a known duration (2 times 5 s and 15, 30, 60, 240, and 600 s). In study 2, 4 elite male road cyclists completed 13 outdoor cycling sessions. In both studies, power output of cyclists was continuously measured using both the PowerPod and InfoCrank power meters. Maximal mean power output was calculated for durations of 1, 5, 15, 30, 60, 240, and 600 seconds plus the average power output in study 2. Results: Power output determined by the PowerPod was almost perfectly correlated with the InfoCrank (r > .996; P < .001) in both studies. Using a rolling resistance previously reported, power output was similar between power meters in study 1 (P = .989), but not in study 2 (P = .045). Rolling resistance estimated by the PowerPod was higher than what has been previously reported; this might have occurred because of errors in the subjective device setup. This overestimation of rolling resistance increased the power output readings. Conclusion: Accuracy of rolling resistance seems to be very important in determining power output using the PowerPod. When using a rolling resistance based on previous literature, the PowerPod showed high validity when compared with the InfoCrank in a controlled field test (study 1) but less so in a dynamic environment (study 2).


2019 ◽  
Vol 14 (9) ◽  
pp. 1273-1279 ◽  
Author(s):  
Owen Jeffries ◽  
Mark Waldron ◽  
Stephen D. Patterson ◽  
Brook Galna

Purpose: Regulation of power output during cycling encompasses the integration of internal and external demands to maximize performance. However, relatively little is known about variation in power output in response to the external demands of outdoor cycling. The authors compared the mean power output and the magnitude of power-output variability and structure during a 20-min time trial performed indoors and outdoors. Methods: Twenty male competitive cyclists ( 60.4 [7.1] mL·kg−1·min−1) performed 2 randomized maximal 20-min time-trial tests: outdoors at a cycle-specific racing circuit and indoors on a laboratory-based electromagnetically braked training ergometer, 7 d apart. Power output was sampled at 1 Hz and collected on the same bike equipped with a portable power meter in both tests. Results: Twenty-minute time-trial performance indoor (280 [44] W) was not different from outdoor (284 [41] W) (P = .256), showing a strong correlation (r = .94; P < .001). Within-persons SD was greater outdoors (69 [21] W) than indoors (33 [10] W) (P < .001). Increased variability was observed across all frequencies in data from outdoor cycling compared with indoors (P < .001) except for the very slowest frequency bin (<0.0033 Hz, P = .930). Conclusions: The findings indicate a greater magnitude of variability in power output during cycling outdoors. This suggests that constraints imposed by the external environment lead to moderate- and high-frequency fluctuations in power output. Therefore, indoor testing protocols should be designed to reflect the external demands of cycling outdoors.


Sign in / Sign up

Export Citation Format

Share Document