Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer

2020 ◽  
Author(s):  
2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Supardin Supardin ◽  
Teuku Riyadhsyah ◽  
Risma Agustina

Material or base course pavement material consists of aggregate based on the well proportioned so that the density obtained in provides support on the road. This study aims to measure the achievement of the density of base course with a sand cone and nuclear densitometer. Case studies carried out on the road Banda Aceh - Calang along 1 km from sta 76 +510 s / d 77 +650 with the testing interval is 50 m. The results of the sand cone test parameters such as: water content (w) = 6.34%, by weight content of the soil (∂ b) = 2.36 gr/cm3, dry unit weight (∂ d) = 2.25 gr/cm3, Volume holes = 1671.68 gr/cm3 and the degree of density (Dr) = 99.60%, while the nuclear densitometer test results such as: water content (w) = 4.12%, by weight content of the soil (∂ b) = 2.38 gr/cm3, dry unit weight (∂ d) = 2.41 g / cm3, and the degree of density (Dr) = 100.01%. Validation of measurements according to sig. (2-tailed), ie 0546> 0050 α, then there is no significant difference in density between the two tools. Results of testing sand cone and nuclear densitometers have 0.4% difference, then both the above test methods can be used. The advantage when using sandcone time it takes relatively longer and cost less, while for the testing of nuclear densitometer test time required faster and more expensive.Keywords: density, sandcone and nuclear densitometer


1986 ◽  
Vol 23 (2) ◽  
pp. 241-246 ◽  
Author(s):  
Y. Wasti ◽  
M. H. Bezirci

The liquid and plastic limits for a variety of natural and artificial soils covering a wide range of plasticity, as determined by the Casagrande method and the fall cone test and based on a strength criterion, were compared. To check the validity of the strength criterion, the undrained shear strength of these soils has been determined with a laboratory vane over the water content range between these limits. A limited comparison of the undrained strength values obtained from the vane test and fall cone test is also given. Key words: Atterberg limits, consistency, fall cone, laboratory vane, shear strength.


2017 ◽  
Vol 12 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
K. Kim ◽  
J. Sim ◽  
T.-H. Kim

This study presents soil-moisture calibrations using low-frequency (15–40 MHz) time domain reflectometry (TDR) probe, referred to as water content reflectometer (WCR), for measuring the volumetric water content of landfill cover soils, developing calibrations for 28 different soils, and evaluating how WCR calibrations are affected by soil properties and electrical conductivity. A 150-mm-diameter PVC cell was used for the initial WCR calibration. Linear and polynomial calibrations were developed for each soil. Although the correlation coefficients (R<sup>2</sup>) for the polynomial calibration are slightly higher, the linear calibrations are accurate and pragmatic to use. The effects of soil electrical conductivity and index properties were investigated using the slopes of linear WCR calibrations. Soils with higher electrical conductivity had lower calibration slopes due to greater attenuation of the signal during transmission in the soil. Soils with higher electrical conductivity tended to have higher clay content, organic matter, liquid limit, and plasticity index. The effects of temperature and dry unit weight on WCR calibrations were assessed in clayey and silty soils. The sensor period was found to increase with the temperature and density increase, with greater sensitivity in fine-textured plastic soils. For typical variations in temperature, errors in volumetric water content on the order of 0.04 can be expected for wet soils and 0.01 for drier soils if temperature corrections are not applied. Errors on the order of 0.03 (clays) and 0.01 (silts) can be expected for typical variations in dry unit weight (± 2 kN/m<sup>3</sup>).


1990 ◽  
Vol 27 (4) ◽  
pp. 472-483 ◽  
Author(s):  
Harsha Wijeweera ◽  
Ramesh C. Joshi

Constant strain-rate (0.01/s) uniaxial compression-strength tests were conducted on more than 200 saturated samples of six fine-grained frozen soils at temperatures between −5 and −17 °C. Saturated soil samples containing total water contents between 15% and 105% were prepared using a consolidation apparatus specially designed for this purpose. The effect of dry unit weight, total water content, temperature, and soil type on the behavior of peak compressive strength was studied. Test results indicate the peak compressive strength of fine-grained soils is sensitive to changes in the dry unit weight and the total water content. The temperature dependence of the peak compressive strength is represented by a simple power law. An empirical formula has been developed to predict the peak compressive strength of fine-grained frozen soils at a particular temperature using index properties, specific surface area, particle-size distribution, and dry unit weight. A linear relationship exists between the peak compressive stress and the yield stress. Key words: peak compressive strength, yield stress, frozen soils, fine-grained soils, dry unit weight, failure strain, temperature, total water content, slurry consolidation.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Thi Nu NGUYEN ◽  
Thanh Duong NGUYEN ◽  
Truong Son BUI

Soft marine soil deposit is distributed under the sea with many special properties. This type ofsoil is rarely researched in Vietnam because of the difficult geotechnical investigation under the sea level.In this paper, the experimental laboratories were performed to investigate the geotechnical properties ofsoft marine soil at Chan May port, Vietnam. The field investigation results indicate that the thickness ofsoft soil varies from a few meters to more than ten meters. Soft soil has a high value of water content,void ratio, and compressibility and a low value of shear strength. The compression index has a goodrelationship with water content, liquid limit, and dry unit weight. The unit weight, shear strength, and preconsolidationpressure increase with the increase of depth. These results show that the soil in the studyarea is unfavorable for construction activities.


Sign in / Sign up

Export Citation Format

Share Document