scholarly journals EKSPRIMENTAL PENGUKURAN KEPADATAN BASE COURSE DENGAN ALAT SAND CONE DAN NUCLEAR DENSITOMETER TEST

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Supardin Supardin ◽  
Teuku Riyadhsyah ◽  
Risma Agustina

Material or base course pavement material consists of aggregate based on the well proportioned so that the density obtained in provides support on the road. This study aims to measure the achievement of the density of base course with a sand cone and nuclear densitometer. Case studies carried out on the road Banda Aceh - Calang along 1 km from sta 76 +510 s / d 77 +650 with the testing interval is 50 m. The results of the sand cone test parameters such as: water content (w) = 6.34%, by weight content of the soil (∂ b) = 2.36 gr/cm3, dry unit weight (∂ d) = 2.25 gr/cm3, Volume holes = 1671.68 gr/cm3 and the degree of density (Dr) = 99.60%, while the nuclear densitometer test results such as: water content (w) = 4.12%, by weight content of the soil (∂ b) = 2.38 gr/cm3, dry unit weight (∂ d) = 2.41 g / cm3, and the degree of density (Dr) = 100.01%. Validation of measurements according to sig. (2-tailed), ie 0546> 0050 α, then there is no significant difference in density between the two tools. Results of testing sand cone and nuclear densitometers have 0.4% difference, then both the above test methods can be used. The advantage when using sandcone time it takes relatively longer and cost less, while for the testing of nuclear densitometer test time required faster and more expensive.Keywords: density, sandcone and nuclear densitometer

2021 ◽  
Vol 1125 (1) ◽  
pp. 012019
Author(s):  
Yosef Cahyo Setianto Poernomo ◽  
Sigit Winarto ◽  
Zendy Bima Mahardana ◽  
Dwifi Aprillia Karisma ◽  
Rekso Ajiono

2018 ◽  
Vol 197 ◽  
pp. 13017 ◽  
Author(s):  
Vera Surtia Bachtiar ◽  
Purnawan ◽  
Reri Afrianita ◽  
Randa Anugerah

This study aims to validate CO dispersion model due to the position of the road toward the dominant wind direction on the transport sector. Sampling for modelling was done on the road with the road angle to wind direction is 0 degree (Jend. A. Yani Road), 30 degree (Andalas Road) and 60 degree (Prof. Dr. Hamka Road). CO dispersion model was obtained from the relations between CO concentration with traffic volume, traffic speed, wind speed and dominant wind direction. Sampling for validation was done at three location points, i.e. Jend. Ahmad Yani Road, By Pass Road and Dr. Wahidin Road, each of which has a position of 0, 45 and 90 degrees toward dominant wind direction. Sampling for CO was done using impinger. Measurement of traffic characteristics and meteorological conditions was performed in conjunction with CO sampling. Validation test was done by using Pearson Product Moment formula and Test of Two Variance. Results of the Two-Variance Test showed no significant difference between two concentrations of CO model and CO measurement. It showed the Test Ratio (RUf) smaller than the Critical Point. Validation test using Pearson Product Moment showed that the CO model can be used for predicting CO dispersion.


Author(s):  
Yalda Rahmati ◽  
Mohammadreza Khajeh Hosseini ◽  
Alireza Talebpour ◽  
Benjamin Swain ◽  
Christopher Nelson

Despite numerous studies on general human–robot interactions, in the context of transportation, automated vehicle (AV)–human driver interaction is not a well-studied subject. These vehicles have fundamentally different decision-making logic compared with human drivers and the driving interactions between AVs and humans can potentially change traffic flow dynamics. Accordingly, through an experimental study, this paper investigates whether there is a difference between human–human and human–AV interactions on the road. This study focuses on car-following behavior and conducted several car-following experiments utilizing Texas A&M University’s automated Chevy Bolt. Utilizing NGSIM US-101 dataset, two scenarios for a platoon of three vehicles were considered. For both scenarios, the leader of the platoon follows a series of speed profiles extracted from the NGSIM dataset. The second vehicle in the platoon can be either another human-driven vehicle (scenario A) or an AV (scenario B). Data is collected from the third vehicle in the platoon to characterize the changes in driving behavior when following an AV. A data-driven and a model-based approach were used to identify possible changes in driving behavior from scenario A to scenario B. The findings suggested there is a statistically significant difference between human drivers’ behavior in these two scenarios and human drivers felt more comfortable following the AV. Simulation results also revealed the importance of capturing these changes in human behavior in microscopic simulation models of mixed driving environments.


2017 ◽  
Vol 12 (No. 1) ◽  
pp. 10-17 ◽  
Author(s):  
K. Kim ◽  
J. Sim ◽  
T.-H. Kim

This study presents soil-moisture calibrations using low-frequency (15–40 MHz) time domain reflectometry (TDR) probe, referred to as water content reflectometer (WCR), for measuring the volumetric water content of landfill cover soils, developing calibrations for 28 different soils, and evaluating how WCR calibrations are affected by soil properties and electrical conductivity. A 150-mm-diameter PVC cell was used for the initial WCR calibration. Linear and polynomial calibrations were developed for each soil. Although the correlation coefficients (R<sup>2</sup>) for the polynomial calibration are slightly higher, the linear calibrations are accurate and pragmatic to use. The effects of soil electrical conductivity and index properties were investigated using the slopes of linear WCR calibrations. Soils with higher electrical conductivity had lower calibration slopes due to greater attenuation of the signal during transmission in the soil. Soils with higher electrical conductivity tended to have higher clay content, organic matter, liquid limit, and plasticity index. The effects of temperature and dry unit weight on WCR calibrations were assessed in clayey and silty soils. The sensor period was found to increase with the temperature and density increase, with greater sensitivity in fine-textured plastic soils. For typical variations in temperature, errors in volumetric water content on the order of 0.04 can be expected for wet soils and 0.01 for drier soils if temperature corrections are not applied. Errors on the order of 0.03 (clays) and 0.01 (silts) can be expected for typical variations in dry unit weight (± 2 kN/m<sup>3</sup>).


1990 ◽  
Vol 27 (4) ◽  
pp. 472-483 ◽  
Author(s):  
Harsha Wijeweera ◽  
Ramesh C. Joshi

Constant strain-rate (0.01/s) uniaxial compression-strength tests were conducted on more than 200 saturated samples of six fine-grained frozen soils at temperatures between −5 and −17 °C. Saturated soil samples containing total water contents between 15% and 105% were prepared using a consolidation apparatus specially designed for this purpose. The effect of dry unit weight, total water content, temperature, and soil type on the behavior of peak compressive strength was studied. Test results indicate the peak compressive strength of fine-grained soils is sensitive to changes in the dry unit weight and the total water content. The temperature dependence of the peak compressive strength is represented by a simple power law. An empirical formula has been developed to predict the peak compressive strength of fine-grained frozen soils at a particular temperature using index properties, specific surface area, particle-size distribution, and dry unit weight. A linear relationship exists between the peak compressive stress and the yield stress. Key words: peak compressive strength, yield stress, frozen soils, fine-grained soils, dry unit weight, failure strain, temperature, total water content, slurry consolidation.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5925
Author(s):  
Grzegorz Mazurek ◽  
Przemysław Buczyński ◽  
Marek Iwański ◽  
Marcin Podsiadło

The deformation of the cold recycled mixture with foamed bitumen in a recycled base with an innovative three-component road binder and foamed bitumen is analysed. Numerical simulation results for the pavement constructed, based on laboratory test results, were verified against the data from the monitoring system installed on the road trial section. In addition, environmental effects, such as air temperature and humidity levels in the pavement structure layers, were considered. Thermal analyses were conducted to identify the thermal properties of the pavement materials under steady heat transfer rate. Determining temperature distribution in the road cross-section in combination with relaxation functions determined for individual pavement layers contributed to the high effectiveness of the numerical simulation of deformation and displacement in the recycled base and the entire pavement. The experimental method of identifying thermal properties allows a fast and satisfactory prediction of temperature distribution in the pavement cross-section.


Sign in / Sign up

Export Citation Format

Share Document