A Quantitative X-Ray Diffraction Technique for Analyzing Sedimentary Rocks and Soils

1995 ◽  
Vol 23 (2) ◽  
pp. 111 ◽  
Author(s):  
DR Petersen ◽  
RE Link ◽  
AD Burnett
Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


1985 ◽  
Vol 49 (352) ◽  
pp. 393-400 ◽  
Author(s):  
P. H. Nadeau ◽  
M. J. Wilson ◽  
W. J. McHardy ◽  
J. M. Tait

AbstractDiagenetic illitic clays from seven North American bentonites of Ordovician, Devonian, and Cretaceous ages and from three subsurface North Sea sandstones of Permian and Jurassic ages have been examined by X-ray diffraction (XRD) and transmission and scanning electron microscopy (TEM and SEM). XRD indicates that the clays from the bentonites are randomly and regularly interstratified illite/smectites (I/S) with 30–90% illite layers, whereas the clays from the Jurassic and Permian sandstones are regularly interstratified I/S, with 80–90% illite layers, and illite respectively. TEM of shadowed materials shows that randomly interstratified I/S consists primarily of mixtures of elementary smectite and ‘illite’ particles (10 and 20Å thick respectively) and that regularly interstratified I/S and illite consist mainly of ‘illite’ particles 20–50 Å thick and > 50 Å thick respectively. Regularly interstratified I/S from bentonites and sandstones are similar with regard to XRD character and particle thickness distribution. These observations can be rationalized if the interstratified XRD character arises from an interparticle diffraction effect, where the smectite interlayers perceived by XRD, result from adsorption of exchangeable cations and water or organic molecules at the interfaces of particles generally < 50Å thick. A neoformation mechanism is proposed by which smectite is converted to illite with increasing depth of burial in sedimentary rocks, based on dissolution of smectite particles and the precipitation/growth of ‘illite’ particles occurring within a population of thin phyllosilicate crystals.


2020 ◽  
pp. 1-8
Author(s):  
Koichi Momma ◽  
Takuji Ikeda ◽  
Toshiro Nagase ◽  
Takahiro Kuribayashi ◽  
Chibune Honma ◽  
...  

Abstract Bosoite (IMA2014-023) is a new silica clathrate mineral containing hydrocarbon molecules in its crystal structure. Bosoite can be considered structurally as a silica analogue of the structure-H gas hydrate, where guest molecules are trapped in cage-like voids constructed of the host framework. The mineral occurs in the Miocene tuffaceous sedimentary rocks at Arakawa, Minami-boso City, Chiba Prefecture, Japan. Bosoite is hexagonal, and it crystallises as an epitaxial intergrowth on chibaite crystals, with the {0001} of bosoite parallel to octahedral {111} form of chibaite. Crystals are colourless and transparent with vitreous lustre. The calculated density is 2.04 g/cm3. The empirical formula (based on 2 O apfu and guest molecules assumed as CH4) is Na0.01(Si0.98Al0.02)Σ1.00O2⋅0.50CH4; the end-member formula is SiO2⋅nC x H2x+2. Bosoite has the space group P6/mmm, with the unit-cell parameters a = 13.9020(3) Å, c = 11.2802(2) Å, V = 1887.99(6) Å3 and Z = 34. The crystal structure of bosoite was refined by single-crystal X-ray diffraction and converged to R1 = 4.26% for the average model and R1 = 2.96% for the model where all oxygen sites are split.


2014 ◽  
Vol 1611 ◽  
pp. 81-87
Author(s):  
Valeria Strokova ◽  
Mikhail Lebedev ◽  
Irina Potapova ◽  
Konstantin Sobolev

ABSTRACTAsphalt concrete is the most common material for highway and motorway construction. The quality of asphalt is determined, to a large extent, by properties of asphalt binder. Fillers, which are mineral powders from carbonate rocks and aggregates fines, such as limestone and dolomite, are often used in the composition of bitumen mastics affecting the performance of asphalt.This article explores the feasibility of using the fines of aluminosilicate sedimentary rocks as fillers. These materials are composed of clay minerals, which change their properties upon the contact with water. Normally, the use of such fillers is restricted because of poor water resistance and swelling of asphalt concrete. In order to improve the performance of these fillers, the thermal modification at moderate temperatures of 500–600 °C has been proposed. Such treatment provides sufficient structural stability of obtained materials and results in the reduction of water absorption of asphalt, improved water resistance (up to 2.5 times) and also, in reduced swelling (up to 9 times).It has been demonstrated that improvement in the filler performance can be achieved by a heat treatment. Such treatment induces changes in the mineral composition and converts the structure of clay minerals into the frame structure of zeolite, as confirmed by X-ray diffraction and infrared spectroscopy. Due to thermal treatment, there is a change in the acid-base properties of the surface of the filler, which is reflected in the profiles of the main adsorption centers. As a result, due to chemisorption, the modified aluminosilicate fillers are able to interact with bitumen. The application of new filler materials in asphalt concrete enables to enhance the performance.


1984 ◽  
Vol 75 (2) ◽  
pp. 135-150 ◽  
Author(s):  
A. H. F. Robertson ◽  
W. G. Henderson

ABSTRACTNarrow, intermittent, fault-bounded outcrops forming the largely Ordovician Highland Border Complex comprise terrigenous-derived turbidities, a dismembered ophiolite, and ophiolite-derived sediments.New major- and trace-element analyses of the mafic igneous rocks confirm that two main groups exist. One, represented in outcrops the length of the Highland Boundary fault-zone, has a mostly MORB-like chemistry with some trace-element compositions conventionally pointing to genesis above a subduction zone. The other group, found more locally, has an alkalic ‘within-plate’ character. Amphibolites interpreted as ophiolitic ‘sole’ rocks are chemically similar to the MORB-type mafic extrusive rocks. X-ray diffraction of the sedimentary rocks reveals kaolinite to be widespread and this is attributed to tropical weathering of the Highland Border Complex beneath a (?mid-Devonian) unconformity surface. New major- and trace-element analyses show that the turbidities of the Highland Border Complex were derived from a terrigenous terrane similar to that which supplied the Dalradian Supergroup. Inter-lava sediments reflect varied terrigenous (distal turbidites), hydrothermal (iron oxide sediments), mafic extrusive (volcaniclastic silt) and biogenic (jaspers) provenances. The ophiolite-derived Highland Border Complex sediments also have a terrigenous component. Unlike, for example, the early Ordovician rocks of the South Mayo trough (Ireland), coeval differentiated volcanic material is not a significant component of the Complex.No one existing model adequately explains all the available data. We favour an origin of the Complex in the Ordovician as a small Gulf of California-type marginal basin which was later tectonically emplaced in stages involving a long history of alternating extension, strike-slip and compression.


2020 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Sudip Saha ◽  
A. H. M. Selim Reza ◽  
Mrinal Kanti Roy

The Tista River is a tributary of the Brahmaputra River. The deposits that exposed along the both banks of the Tista River are characterized mainly by sand, sand laden with gravel and pebble with minor amounts of silt and clay. The X-ray Diffraction (XRD) of the clay sized sediments of the Tista River reveals that illite (and/or mica), chlorite, kaolinite, quartz and feldspar are the principal mineral constituents. The minor to trace amounts of lavendulan, glauconite lepidolite, enstatite, sekaninaite and ferrierite minerals were identified in the investigated area. Illite constitutes 36% of the total minerals of the Tista River basin. The values of the illite crystallinity index varies from 0.228 to 0.345, indicating that the illites are relatively well crystallized and derived from the mechanical weathering of pre-existing rocks. The presence of illite and kaolinite suggests their derivation from the crystalline rocks that contain feldspar and mica, as well as from the pre-existing soils and sedimentary rocks. Glauconite forms in the sediments of continental shelf in the marine environment. The accessory minerals like enstatite, sekanianite and ferrierite are derived from basic igneous rocks. The dissolution of copper arsenate mineral, lavendulan might be a source of arsenic in the sediments of the study area.  


1988 ◽  
Vol 52 (367) ◽  
pp. 505-508 ◽  
Author(s):  
Steven J. Van Kauwenbergh ◽  
Michelle Cooper-Fleck ◽  
Marilyn R. Williams

AbstractDuring a mineralogical study of guano-derived sedimentary phosphate ore from the Lamphun area of northwest Thailand, robertsite [Ca6(H2O)6Mn3+9O6(PO4)9.3H2O] was identified and concentrated to a level suitable for X-ray diffraction and chemical analysis. Robertsite has previously been described only in association with altered phosphatic pegmatites. This new occurrence in a phosphate deposit indicates that it may be found in a broad spectrum of sedimentary rocks.


Sign in / Sign up

Export Citation Format

Share Document