scholarly journals Illite crystallinity index an indicator of physical weathering of the Sediments of the Tista River, Rangpur, Bangladesh

2020 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Sudip Saha ◽  
A. H. M. Selim Reza ◽  
Mrinal Kanti Roy

The Tista River is a tributary of the Brahmaputra River. The deposits that exposed along the both banks of the Tista River are characterized mainly by sand, sand laden with gravel and pebble with minor amounts of silt and clay. The X-ray Diffraction (XRD) of the clay sized sediments of the Tista River reveals that illite (and/or mica), chlorite, kaolinite, quartz and feldspar are the principal mineral constituents. The minor to trace amounts of lavendulan, glauconite lepidolite, enstatite, sekaninaite and ferrierite minerals were identified in the investigated area. Illite constitutes 36% of the total minerals of the Tista River basin. The values of the illite crystallinity index varies from 0.228 to 0.345, indicating that the illites are relatively well crystallized and derived from the mechanical weathering of pre-existing rocks. The presence of illite and kaolinite suggests their derivation from the crystalline rocks that contain feldspar and mica, as well as from the pre-existing soils and sedimentary rocks. Glauconite forms in the sediments of continental shelf in the marine environment. The accessory minerals like enstatite, sekanianite and ferrierite are derived from basic igneous rocks. The dissolution of copper arsenate mineral, lavendulan might be a source of arsenic in the sediments of the study area.  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4723
Author(s):  
Sara Dalle Vacche ◽  
Vijayaletchumy Karunakaran ◽  
Alessia Patrucco ◽  
Marina Zoccola ◽  
Loreleï Douard ◽  
...  

Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5–12 nm, stacks of nanofibrils with widths of 20–200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.


Clay Minerals ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 191-203 ◽  
Author(s):  
F. Khormali ◽  
A. Abtahi ◽  
H. R. Owliaie

AbstractClay minerals of calcareous sedimentary rocks of southern Iran, part of the old Tethys area, were investigated in order to determine their origin and distribution, and to reconstruct the palaeoclimate of the area. Chemical analysis, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and thin-section studies were performed on the 16 major sedimentary rocks of the Fars and Kuhgiluyeh Boyerahmad Provinces.Kaolinite, smectite, chlorite, illite, palygorskite and illite-smectite interstratified minerals were detected in the rocks studied. The results revealed that detrital input is possibly the main source of kaolinite, smectite, chlorite and illite, whilein situneoformation during the Tertiary shallow saline and alkaline environment could be the dominant cause of palygorskite occurrences in the sedimentary rocks.The presence of a large amount of kaolinite in the Lower Cretaceous sediments and the absence or rare occurrence of chlorite, smectite, palygorskite and illite are in accordance with the warm and humid climate of that period. Smaller amounts of kaolinite and the occurrence of smectite in Upper Cretaceous sediments indicate the gradual shift from warm and humid to more seasonal climate. The occurrence of palygorskite and smectite and the disappearance of kaolinite in the late Palaeocene sediments indicate the increase in aridity which has probably continued to the present time.


1985 ◽  
Vol 49 (352) ◽  
pp. 393-400 ◽  
Author(s):  
P. H. Nadeau ◽  
M. J. Wilson ◽  
W. J. McHardy ◽  
J. M. Tait

AbstractDiagenetic illitic clays from seven North American bentonites of Ordovician, Devonian, and Cretaceous ages and from three subsurface North Sea sandstones of Permian and Jurassic ages have been examined by X-ray diffraction (XRD) and transmission and scanning electron microscopy (TEM and SEM). XRD indicates that the clays from the bentonites are randomly and regularly interstratified illite/smectites (I/S) with 30–90% illite layers, whereas the clays from the Jurassic and Permian sandstones are regularly interstratified I/S, with 80–90% illite layers, and illite respectively. TEM of shadowed materials shows that randomly interstratified I/S consists primarily of mixtures of elementary smectite and ‘illite’ particles (10 and 20Å thick respectively) and that regularly interstratified I/S and illite consist mainly of ‘illite’ particles 20–50 Å thick and > 50 Å thick respectively. Regularly interstratified I/S from bentonites and sandstones are similar with regard to XRD character and particle thickness distribution. These observations can be rationalized if the interstratified XRD character arises from an interparticle diffraction effect, where the smectite interlayers perceived by XRD, result from adsorption of exchangeable cations and water or organic molecules at the interfaces of particles generally < 50Å thick. A neoformation mechanism is proposed by which smectite is converted to illite with increasing depth of burial in sedimentary rocks, based on dissolution of smectite particles and the precipitation/growth of ‘illite’ particles occurring within a population of thin phyllosilicate crystals.


2020 ◽  
pp. 1-8
Author(s):  
Koichi Momma ◽  
Takuji Ikeda ◽  
Toshiro Nagase ◽  
Takahiro Kuribayashi ◽  
Chibune Honma ◽  
...  

Abstract Bosoite (IMA2014-023) is a new silica clathrate mineral containing hydrocarbon molecules in its crystal structure. Bosoite can be considered structurally as a silica analogue of the structure-H gas hydrate, where guest molecules are trapped in cage-like voids constructed of the host framework. The mineral occurs in the Miocene tuffaceous sedimentary rocks at Arakawa, Minami-boso City, Chiba Prefecture, Japan. Bosoite is hexagonal, and it crystallises as an epitaxial intergrowth on chibaite crystals, with the {0001} of bosoite parallel to octahedral {111} form of chibaite. Crystals are colourless and transparent with vitreous lustre. The calculated density is 2.04 g/cm3. The empirical formula (based on 2 O apfu and guest molecules assumed as CH4) is Na0.01(Si0.98Al0.02)Σ1.00O2⋅0.50CH4; the end-member formula is SiO2⋅nC x H2x+2. Bosoite has the space group P6/mmm, with the unit-cell parameters a = 13.9020(3) Å, c = 11.2802(2) Å, V = 1887.99(6) Å3 and Z = 34. The crystal structure of bosoite was refined by single-crystal X-ray diffraction and converged to R1 = 4.26% for the average model and R1 = 2.96% for the model where all oxygen sites are split.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Valerii A. Barbash ◽  
Olha V. Yashchenko ◽  
Olesia A. Vasylieva

Miscanthus x giganteus stalks were used to make organosolvent pulp and nanocellulose. The organosolvent miscanthus pulp (OMP) was obtained through thermal treatment in the mixture of glacial acetic acid and hydrogen peroxide at the first stage and the alkaline treatment at the second stage. Hydrolysis of the never-dried OМP was carried out by a solution of sulfuric acid with concentrations of 43% and 50% and followed by ultrasound treatment. Structural changes and the crystallinity index of OMP and nanocellulose were studied by SEM and FTIR methods. X-ray diffraction analysis confirmed an increase in the crystallinity of OMP and nanocellulose as a result of thermochemical treatment. We show that nanocellulose has a density of up to 1.6 g/cm3, transparency up to 82%, and a crystallinity index of 76.5%. The AFM method showed that the particles of nanocellulose have a diameter in the range from 10 to 20 nm. A thermogravimetric analysis confirmed that nanocellulose films have a denser structure and lower mass loss in the temperature range of 320–440°C compared to OMP. The obtained nanocellulose films have high tensile strength up to 195 MPa. The nanocellulose obtained from OMP exhibits the improved properties for the preparation of new nanocomposite materials.


Clay Minerals ◽  
1992 ◽  
Vol 27 (1) ◽  
pp. 35-46 ◽  
Author(s):  
R. Romero ◽  
M. Robert ◽  
F. Elsass ◽  
C. Garcia

AbstractThe soils developed from crystalline and metamorphic rocks in Galicia (NW Spain), are characterized by high concentrations of 1 : 1 phyllosilicates and gels. Thermal analyses, X-ray diffraction after formamide treatment, and IR spectroscopy in the OH vibration range have been performed on the clay fractions, but do not discriminate clearly between the different associated mineralogical phases. HRTEM studies linked with microdiffraction and microanalyses have led to the identification of several types of gel which transform into goethite, gibbsite, clay precursors, and/ or halloysite according to their composition (Fe, Al or Si-Al). Halloysite-like minerals are the main constituents and they have a great variety of morphologies: lamellar, spheroidal, tubular, platy or poikilitic. In general, halloysite and gel formation on crystalline rocks is related to the bioclimatic conditions, involving high hydrolysis in the presence of organic matter. This halloysite seems to be a metastable mineral which would evolve into kaolinite with increasing weathering time.


1980 ◽  
Vol 43 (331) ◽  
pp. 857-863 ◽  
Author(s):  
D. Robinson ◽  
R. A. Nicholls ◽  
L. J. Thomas

SummaryIllite crystallinity determinations on Palaeozoic pelitic rocks, whose stratigraphic range runs from Lower Cambrian to Westphalian, indicate that anchimetamorphism has affected both the Lower and Upper Palaeozoic sequences. Two metamorphic episodes are in evidence, with the earlier, Caledonian, being of slightly higher grade. The higher anchizone crystallinity values are recorded from the Fishguard area in which mineral assemblages of the prehnite-pumpellyite facies have recently been recognized in basic igneous rocks. The later metamorphic episode has affected rocks to the south of the Variscan front. Here crystallinity values are low anchizone but some straddle the boundary with the diagenetic state. The Pembroke coalfield lies in this southern area and has coals largely of anthracite rank with volatile matter contents of between 10.1 and 5% Grade of metamorphism as indicated by crystallinity and by coal rank data from the Pembroke coalfield shows anomalous results to that described from the main South Wales coalfield. A neo-formed 2M illite from the Variscan spaced cleavage is described with analytical and X-ray diffraction data.


2018 ◽  
Vol 280 ◽  
pp. 340-345 ◽  
Author(s):  
Muhammad Hanif Sainorudin ◽  
Masita Mohammad ◽  
Nurul Huda Abd Kadir ◽  
Nur Athirah Abdullah ◽  
Zahira Yaakob

In this study, microcrystalline cellulose (MCC) was extracted from various types of local agricultural wastes. Four types of agricultural waste such as coconut coir, banana stem, sugarcane bagasse and pineapple leaves were collected, extracted and hydrolyzed into microcrystalline cellulose, using pre-treatment (alkaline and bleaching) and acid hydrolysis, respectively. The extracted MCC were analyzed and compared with those of commercially available MCC. The study of crystallinity behaviors of the obtained MCC was performed by X-Ray Diffraction (XRD) analysis. The XRD of MCC revealed that the crystallinity of pineapple leaves has the highest crystallinity index with 75% in value and closest compared to commercial MCC, 81.25%. The value of crystallinity index for banana stem is 74.55% followed by coconut coir, 72.73% and sugarcane bagasse, 66.50%. All of the MCC samples showed the similar pattern with the typical crystalline structure of cellulose I. The crystallite size of all MCC samples was calculated and found in the range of 4.04 – 5.14 nm. These extracted MCC that obtained from several agricultural wastes was supposed to have a high potential as value-added products in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document