Root Growth in 2D Wet Granular Media Modified by Intrusions

Author(s):  
C. M. Cejas ◽  
J. C. Castaing ◽  
L. Hough ◽  
C. Frétigny ◽  
R. Dreyfus
Keyword(s):  
1969 ◽  
Vol 14 (3) ◽  
pp. 236-248 ◽  
Author(s):  
A.M. Abdalla ◽  
D.R.P. Hettiaratchi ◽  
A.R. Reece
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Cesare M. Cejas ◽  
Lawrence A. Hough ◽  
Raphaël Beaufret ◽  
Jean-Christophe Castaing ◽  
Christian Frétigny ◽  
...  

Abstract We investigate certain aspects of the physical mechanisms of root growth in a granular medium and how these roots adapt to changes in water distribution induced by the presence of structural inhomogeneities in the form of solid intrusions. Physical intrusions such as a square rod added into the 2D granular medium maintain robust capillary action, pumping water from the more saturated areas at the bottom of the cell towards the less saturated areas near the top of the cell while the rest of the medium is slowly devoid of water via evaporation. The intrusion induces “preferential tropism” of roots by first generating a humidity gradient that attracts the root to grow towards it. Then it guides the roots and permits them to grow deeper into more saturated regions in the soil. This further allows more efficient access to available water in the deeper sections of the medium thereby resulting to increased plant lifetime.


1994 ◽  
Vol 92 (4) ◽  
pp. 675-680 ◽  
Author(s):  
Iduna Arduini ◽  
Douglas L. Godbold ◽  
Antonino Onnis

1998 ◽  
Vol 08 (PR8) ◽  
pp. Pr8-87-Pr8-94
Author(s):  
F. Dedecker ◽  
Ph. Dubujet ◽  
B. Cambou
Keyword(s):  

Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


2005 ◽  
Vol 33 (4) ◽  
pp. 697-704 ◽  
Author(s):  
Adriana Sánchez-Urdaneta ◽  
Cecilia Peña-Valdivia ◽  
Carlos Trejo ◽  
J. Aguirre R. ◽  
Elizabeth Cárdenas S.

2000 ◽  
Vol 627 ◽  
Author(s):  
M. E. Swanson ◽  
M. Landreman ◽  
J. Michel ◽  
J. Kakalios

ABSTRACTWhen an initially homogeneous binary mixture of granular media such as fine and coarse sand is poured near the closed edge of a “quasi-two-dimensional” Hele-Shaw cell consisting of two vertical transparent plates held a narrow distance apart, the mixture spontaneously forms alternating segregated layers. Experimental measurements of this stratification effect are reported in order to determine which model, one which suggests that segregation only occurs when the granular material contained within a metastable heap between the critical and maximum angle of repose avalanches down the free surface, or one for which the segregation results from smaller particles becoming trapped in the top surface and being removed from the moving layer during continuous flow. The result reported here indicate that the Metastable Wedge model provides a natural explanation for the initial mixed zone which precedes the formation of the layers, while the Continuous Flow model explains the observed upward moving kink of segregated material for higher granular flux rates, and that both mechansims are necessary in order to understand the observed pairing of segregated layersfor intermediate flow rates and cell separations.


2015 ◽  
Vol 8 (1) ◽  
pp. 2005-2009
Author(s):  
Diandong Ren ◽  
Lance M. Leslie ◽  
Congbin Fu

 Legged locomotion of robots has advantages in reducing payload in contexts such as travel over deserts or in planet surfaces. A recent study (Li et al. 2013) partially addresses this issue by examining legged locomotion over granular media (GM). However, they miss one extremely significant fact. When the robot’s wheels (legs) run over GM, the granules are set into motion. Hence, unlike the study of Li et al. (2013), the viscosity of the GM must be included to simulate the kinematic energy loss in striking and passing through the GM. Here the locomotion in their experiments is re-examined using an advanced Navier-Stokes framework with a parameterized granular viscosity. It is found that the performance efficiency of a robot, measured by the maximum speed attainable, follows a six-parameter sigmoid curve when plotted against rotating frequency. A correct scaling for the turning point of the sigmoid curve involves the footprint size, rotation frequency and weight of the robot. Our proposed granular response to a load, or the ‘influencing domain’ concept points out that there is no hydrostatic balance within granular material. The balance is a synergic action of multi-body solids. A solid (of whatever density) may stay in equilibrium at an arbitrary depth inside the GM. It is shown that there exists only a minimum set-in depth and there is no maximum or optimal depth. The set-in depth of a moving robot is a combination of its weight, footprint, thrusting/stroking frequency, surface property of the legs against GM with which it has direct contact, and internal mechanical properties of the GM. If the vehicle’s working environment is known, the wheel-granular interaction and the granular mechanical properties can be grouped together. The unitless combination of the other three can form invariants to scale the performance of various designs of wheels/legs. Wider wheel/leg widths increase the maximum achievable speed if all other parameters are unchanged.


Sign in / Sign up

Export Citation Format

Share Document