Thermoelastic Transformation Behavior of Nitinol

Author(s):  
K. E. Perry ◽  
P. E. Labossiere ◽  
E. Steffler
2006 ◽  
Vol 3 (9) ◽  
pp. 100374
Author(s):  
SW Dean ◽  
KE Perry ◽  
PE Labossiere ◽  
E Steffler

2000 ◽  
Vol 17 (2) ◽  
pp. 311-319 ◽  
Author(s):  
B. Gleeson ◽  
S.M.M. Hadavi ◽  
D.J. Young

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Lee-Chae Jang

Abstract Dedekind sums occur in the transformation behavior of the logarithm of the Dedekind eta-function under substitutions from the modular group. In 1892, Dedekind showed a reciprocity relation for the Dedekind sums. Apostol generalized Dedekind sums by replacing the first Bernoulli function appearing in them by any Bernoulli functions and derived a reciprocity relation for the generalized Dedekind sums. In this paper, we consider the poly-Dedekind sums obtained from the Dedekind sums by replacing the first Bernoulli function by any type 2 poly-Bernoulli functions of arbitrary indices and prove a reciprocity relation for the poly-Dedekind sums.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 699
Author(s):  
Xiaojin Liu ◽  
Guo Yuan ◽  
Raja. Devesh Kumar Misra ◽  
Guodong Wang

In this study, the acicular ferrite transformation behavior of a Ti–Ca deoxidized low carbon steel was studied using a high-temperature laser scanning confocal microscopy (HT-LSCM). The in situ observation of the transformation behavior on the sample surface with different cooling rates was achieved by HT-LSCM. The microstructure between the surface and interior of the HT-LSCM sample was compared. The results showed that Ti–Ca oxide particles were effective sites for acicular ferrite (AF) nucleation. The start transformation temperature at grain boundaries and intragranular particles decreased with an increase in cooling rate, but the AF nucleation rate increased and the surface microstructure was more interlocked. The sample surface microstructure obtained at 3 °C/s was dominated by ferrite side plates, while the ferrite nucleating sites transferred from grain boundaries to intragranular particles when the cooling rate was 15 °C/s. Moreover, it was interesting that the microstructure and microhardness of the sample surface and interior were different. The AF dominating microstructure, obtained in the sample interior, was much finer than the sample surface, and the microhardness of the sample surface was much lower than the sample interior. The combined factors led to a coarse size of AF on the sample surface. AF formed at a higher temperature resulted in the coarse size. The available particles for AF nucleation on the sample surface were quite limited, such that hard impingement between AF plates was much weaker than that in the sample interior. In addition, the transformation stress in austenite on the sample surface could be largely released, which contributed to a coarser AF plate size. The coarse grain size, low dislocation concentration and low carbon content led to lower hardness on the sample surface.


2021 ◽  
Vol 200 ◽  
pp. 105549
Author(s):  
Xiaobo Min ◽  
Qiujing Xu ◽  
Yong Ke ◽  
Hui Xu ◽  
Liwei Yao ◽  
...  

2001 ◽  
Vol 16 (7) ◽  
pp. 2158-2169 ◽  
Author(s):  
B. Basu ◽  
J. Vleugels ◽  
O. Van Der Biest

The objective of the present article is to study the influence of TiB2 addition on the transformation behavior of yttria stabilized tetragonal zirconia polycrystals (Y-TZP). A range of TZP(Y)–TiB2 composites with different zirconia starting powder grades and TiB2 phase contents (up to 50 vol%) were processed by the hot-pressing route. Thermal expansion data, as obtained by thermo-mechanical analysis were used to assess the ZrO2 phase transformation in the composites. The thermal expansion hysteresis of the transformable ceramics provides information concerning the transformation behavior in the temperature range of the martensitic transformation and the low-temperature degradation. Furthermore, the transformation behavior and susceptibility to low-temperature degradation during thermal cycling were characterized in terms of the overall amount and distribution of the yttria stabilizer, zirconia grain size, possible dissolution of TiB2 phase, and the amount of residual stress generated in the Y-TZP matrix due to the addition of titanium diboride particles. For the first time, it is demonstrated in the present work that the thermally induced phase transformation of tetragonal zirconia in the Y-TZP composites can be controlled by the intentional addition of the monoclinic zirconia particles into the 3Y-TZP matrix.


2015 ◽  
Vol 13 ◽  
pp. 83-90 ◽  
Author(s):  
Cristiana Diana Cristea ◽  
Magdalena Lungu ◽  
Alexander M. Balagurov ◽  
Virgil Marinescu ◽  
Otilia Culicov ◽  
...  

The addition of Cu to near equiatomic NiTi shape memory alloys (SMAs) can provide some modifications of their shape memory properties by affecting their transformation behavior. The same effect was obtained in the case of Ni3Ti2 and Ni4Ti3 precipitates presence in the microstructure of NiTi. Also the substitution of Cu to NiTi alloys increases the hardness of the materials. This paper presents the microstructural and mechanical investigations of NiTi and NiTiCu alloys obtained by spark plasma sintering (SPS) process that represents a great potential for researchers as a new process for the fabrication of intermetallic compounds.


Sign in / Sign up

Export Citation Format

Share Document