scholarly journals Electrical and photoelectric properties of MoN/p-CdTe and MoN/n-CdTe heterojunctions

Author(s):  
T. T. Kovaliuk ◽  
M. N. Solovan ◽  
P. D. Maryanchuk

Due to the physical properties of MoN and ITO thin films, it was decided to create MoN/p-CdTe and MoN/n-CdTe heterostructures and investigate their electrical and photoelectric properties. The method of reactive magnetron sputtering was used to create thin MoN and ITO films on single crystal CdTe substrates with different conductivity types. To manufacture test heterostructures, the following CdTe crystal substrates were used: 1) p-type conductivity, grown by Bridgman technique at low cadmium vapor pressures; 2) n-type conductivity, grown by Bridgman technique at high cadmium vapor pressures. During the deposition process, the argon pressure in the vacuum chamber was 0.4 Pa. The power of the magnetron was 30 W, the sputtering process continued 5 min at a substrate temperature of 150°C. I-V characteristics of the heterostructures at different temperatures were measured, the height of the potential barrier, the values of the series and shunt resistance were determined. Electrical and photoelectric properties of the heterostructures were studied, and the dominant mechanisms of current transfer at forward displacements was established. The tunnel-recombination mechanism was found to be the dominant mechanism of current transfer in the MoN/p-CdTe and MoN/n-CdTe heterostructures. It was shown that the photoelectric parameters for the MoN/p-CdTe heterostructure are higher than those for MoN/n-CdTe. MoN/p-CdTe heterojunctions have the following photoelectric parameters: open-circuit voltage Voc = 0.4 V, short-circuit current Isc = 24.6 mA/cm2 at an illumination intensity of 80 mW/cm2. This makes them a promising material for the manufacture of detectors of various radiation types.

1979 ◽  
Vol 237 (1) ◽  
pp. R74-R79 ◽  
Author(s):  
T. C. Cox ◽  
R. H. Alvarado

Carefully dissected, mounted, and bathed with Ringer solution, the larval bullfrog skin has a resistance of about 9,000 omega.cm2 and a stable transepithelial electrical potential of about 20 mV (inside +). A short-circuit current of about 2 microA.cm-2 is generated that is comparable in magnitude to the net inward flux of Na+. At open circuit the flux ratio equation for Na+ is not satisfied. Larval skin is less sensitive to ouabain, amiloride, and ADH than adult skin. The current-voltage (C-V) relationship across the preparation is not linear; there are distinct breaks in both the hyperpolarizing and hypopolarizing regions. The former break, at about +130 mV, corresponds with a break observed in adult skin that corresponds with ENa. The shunt resistance (RS) and active pathway resistance (RA) were estimated by C-V curve analysis and by ion substitution. The two methods yielded comparable values with RS about 11 k omega.cm2 and RA about 62 k omega.cm2. It is suggested that transport is limited by the number of entry sites for sodium at the apical border of transport cells.


2013 ◽  
Vol 833 ◽  
pp. 241-246
Author(s):  
Ming Fu ◽  
Hong Yong Li ◽  
Gong Lei Jin ◽  
Lin Fan ◽  
Dong Chen ◽  
...  

Aluminum rear contacts of silicon solar cells are made commonly by screen-printing aluminum paste and sintering process. Aluminum thick film contacts have a direct effect on photoelectric properties of solar cells, like open circuit voltage (Voc), short circuit current (Isc), conversion efficiency (η), etc. The principle of Al-back surface field (BSF) has been studied in this paper. With thermal gravimetric analysis and differential scanning calorimetry (TGA-DSC) method, the chemical reactions between aluminum thick film and silicon substrate during heat treatment have been investigated. The microstructure of aluminum thick film contacts were analysed by SEM. The electrical properties of Al-BSF are improved by adding a proper amount of nano silicon to the aluminum paste.


2019 ◽  
Author(s):  
Saad Motahhir ◽  
Abdelaziz El Ghzizal ◽  
Aziz Derouich

The objective of this work is to make a model of photovoltaic cells (PV) dedicated to teaching renewable energy using PSIM software. This model is based on ratings provided by the manufacturer as: open circuit voltage, short circuit current, voltage and current corresponding to the maximum power point. So the resulting model has a better approach and takes into account the influence of different physical parameters including temperature, irradiation, series resistance, shunt resistance and saturation current of the diode. After a general presentation of the photovoltaic conversion chain, the article details, at first, the modeling of a photovoltaic panel. Secondly, we focus on the implementation of a MPPT command for controlling the DC / DC to operate the PV array at maximum power (MPP).


Author(s):  
Roland Szabo ◽  
Aurel Gontean

The aim of this work is to introduce new ways to model the I-V characteristic of a PV cell or PV module using straight lines and Bézier curves. This is a complete novel approach, Bézier curves being previously used mainly for computer graphics. The I-V characteristic is divided in three sections, modeled with lines and a quadratic Bézier curve in the first case and with three cubic Bézier curves in the second case. The result proves to be accurate and relies on the fundamental points usually present in the PV cell datasheets: Voc (the open circuit voltage), Isc (the short circuit current), Vmp (the maximum power corresponding voltage) and Imp (the maximum power corresponding current) and the parasitic resistances Rsh0 (shunt resistance at Isc) and Rs0 (series resistance at Voc). The proposed algorithm completely defines all the implied control points and the error is analyzed. The proposed method is validated for different temperatures and irradiances. The model is finally compared and validated using the least squares fitting method.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Amornrat Limmanee ◽  
Songkiate Kittisontirak ◽  
Channarong Piromjit ◽  
Jaran Sritharathikhun ◽  
Kobsak Sriprapha

ABSTRACTWe have prepared n-type hydrogenated microcrystalline silicon oxide films (n μc-SiO:H) and investigated their structural, electrical and optical properties. Raman spectra shows that, amorphous phase of the n μc-SiO:H films tends to increase when the CO2/SiH4 ratio increases from 0 to 0.28 resulting in a reduction of the crystalline volume fraction (Xc) from 70 to 12%. Optical bandgap (E04) becomes gradually wider while dark conductivity and refractive index (n) continuously drop with increasing CO2/SiH4 ratio. The n μc-SiO:H films have been practically applied as a n layer in top cell of a-SiO:H/μc-Si:H micromorph silicon solar cells. We found that, open circuit voltage (Voc) and fill factor (FF) of the cells gradually increased, while short circuit current density (Jsc) remained almost the same value with increasing CO2/SiH4 ratio for n top layer deposition up to 0.23. The highest initial cell efficiency of 10.7% is achieved at the CO2/SiH4 ratio of 0.23. The enhancement of the Voc is supposed to be due to a reduction of reverse bias at sub cell connection (n top/p bottom interface). An increase of shunt resistance (Rsh) which is caused by a better tunnel recombination junction contributes to the improvement in the FF. Quantum efficiency (QE) results indicate no difference between the cells using n top μc-SiO:H and the cells with n top μc-Si:H layers. These results reveal that, the n μc-SiO:H films in this study do not work as an intermediate reflector to enhance light scattering inside the solar cells, but mainly play a key role to allow ohmic and low resistive electrical connection between the two adjacent cells in the micromorph silicon solar cells.


Author(s):  
P. V. Ram Kumar ◽  
◽  
Aman Khurana ◽  
R. S. Mishra

First electrical behavior i.e. short circuit current and open-circuit voltage is observed. The effect of different parameters on the I-V and P-V curve is studied considering uniform illumination. These parameters are insolation level, temperature, series resistance, shunt resistance, diode reverse saturation current. A variation on I-V and P-V curves are different with each parameter. With some parameters, the effect is significant while for others the effect is not so significant. For the parameters whose effect is not so significant large variation of inputs is taken for showing the effect. Simulation work is done in MATLAB


Author(s):  
Roland Szabo ◽  
Aurel Gontean

The aim of this work is to introduce new ways to model the I-V characteristic of a PV cell or PV module using straight lines and Bézier curves. This is a complete novel approach, Bézier curves being previously used mainly for computer graphics. The I-V characteristic is divided in three sections, modeled with lines and a quadratic Bézier curve in the first case and with three cubic Bézier curves in the second case. The result proves to be accurate and relies on the fundamental points usually present in the PV cell datasheets: Voc (the open circuit voltage), Isc (the short circuit current), Vmp (the maximum power corresponding voltage) and Imp (the maximum power corresponding current) and the parasitic resistances Rsh0 (shunt resistance at Isc) and Rs0 (series resistance at Voc). The proposed algorithm completely defines all the implied control points and the error is analyzed. The temperature and irradiance influence is also analyzed. The model is also compared using the least squares fitting method. The final validation shows how to use Bézier cubic curves to accurately represent the I-V curves of an extensive range of PV cells and arrays.


2015 ◽  
Vol 12 (1) ◽  
pp. 77-82 ◽  
Author(s):  
M.R. Merad Boudia ◽  
A Cheknane ◽  
B Benyoucef

A numerical simulation study of a Tandem solar cell is presented. The parameters of single and two-diodes lumped-circuit model are usually the saturation current, the series resistance, the ideality factor, the shunt resistance and the photocurrent. It is found that the influence of the distributed series resistance on electrical characteristics can be described numerically by the application of the two models to Tandem organic solar cells. A description of the efficiency, fill factor, open circuit voltage and short circuit current on the devices are marked with series resistance, temperature and ideality factor. This approach allows one to obtain a set of parameters which is reasonable and representative of the physical system.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
I. Morsi ◽  
Sh. Ebrahim ◽  
M. Soliman

Polyaniline/n-type Si heterojunctions solar cell are fabricated by spin coating of soluble dodecylbenzene sulfonic acid (DBSA)-doped polyaniline onto n-type Si substrate. The electrical characterization of the Al/n-type Si/polyaniline/Au (Ag) structure was investigated by using current-voltage (I-V), capacitance-voltage (C-V), and impedance spectroscopy under darkness and illumination. The photovoltaic cell parameters, that is, open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and energy conversion efficiency (η) were calculated. The highestJsc,Voc, and efficiency of these heterojunctions obtained using PANI-DBSA as a window layer (wideband gap) and Au as front contact are 1.8 mA/cm2, 0.436 V, and 0.13%, respectively. From Mott-Schottky plots, it was found that order of charge carrier concentrations is3.5×1014and1.0×1015/cm3for the heterojunctions using Au as front contact under darknessness and illumination, respectively. Impedance study of this type of solar cell showed that the shunt resistance and series resistance decreased under illumination.


2013 ◽  
Vol 448-453 ◽  
pp. 1452-1456
Author(s):  
Jiang Biao Feng ◽  
Ling Jun Hua ◽  
Feng Jun Shan ◽  
Zhi Gang Yan ◽  
Guo Chao Qi

Diatomite/TiO2 composite films were prepared with diatomite and P25 TiO2 nanoparticles on conductive glass substrates. The surface morphology and phase composition of the film were characterized with scanning electron microscopy (SEM) and X ray diffraction (XRD). It is concluded that diatomite doped into the film will form granular cores. Dye sensitized solar cells (DSSC) were fabricated with the diatomite/TiO2 composite film as anode, and the photoelectric properties of the cells were tested. Results show that the doping of diatomite can significantly increase the open circuit voltage and short circuit current of DSSC. Optimized photoelectric properties can be acquired as 1.3 percent diatomite doped in TiO2 film.


Sign in / Sign up

Export Citation Format

Share Document