scholarly journals Corticostriatal Plasticity Established by Initial Learning Persists after Behavioral Reversal

eNeuro ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. ENEURO.0209-20.2021
Author(s):  
Sanchari Ghosh ◽  
Anthony M. Zador
Author(s):  
Sanchari Ghosh ◽  
Anthony M Zador

AbstractThe neural mechanisms that allow animals to adapt their previously learned associations in response to changes in the environment remain poorly understood. To probe the synaptic mechanisms that mediate such adaptive behavior, we trained mice on an auditory-motor reversal task, and tracked changes in the strength of corticostriatal synapses associated with the formation of learned associations. Using a ChR2-based electrophysiological assay in acute striatal slices, we measured the strength of these synapses after animals learned to pair auditory stimuli with specific actions. Here we report that the pattern of synaptic strength initially established by learning remains unchanged even when the task contingencies are reversed. Our results suggest that synaptic changes associated with the initial acquisition of this task are not erased or over-written, and that behavioral reversal of learned associations may recruit a separate neural circuit.


2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 2 Registered Report manuscript now accepted for publication at eNeuro. The accepted Stage 1 manuscript is posted here: https://psyarxiv.com/s7dft, and the pre-registration for the project is available here (https://osf.io/fqh8j, 9/11/2019). A link to the final Stage 2 manuscript will be posted after peer review and publication.]] There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day after training), a forgotten memory (8 days after training), and a savings memory (8 days after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We found that the re-activation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-day old) memory, with no co-regulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression (r = .04 95% CI [-.12, .20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.


2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 1 Registered Report manuscript. The project was submitted for review to eNeuro. Upon revision and acceptance, this version of the manuscript was pre-registered on the OSF (9/11/2019, https://osf.io/fqh8j) (but due to an oversight not posted as a preprint until July 2020). A Stage 2 manuscript is now posted as a pre-print (https://psyarxiv.com/h59jv) and is under review at eNeuro. A link to the final Stage 2 manuscript will be added when available.]]There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting make different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval-failure then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day from training), a forgotten memory (8 days from training), and a savings memory (8 days from training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We find that the transcriptional correlates of savings are [highly similar / somewhat similar / unique] relative to new (1-day-old) memories. Specifically, savings memory and a new memory share [X] of [Y] regulated transcripts, show [strong / moderate / weak] similarity in sets of regulated transcripts, and show [r] correlation in regulated gene expression, which is [substantially / somewhat / not at all] stronger than at forgetting. Overall, our results suggest that forgetting represents [decay / retrieval-failure / mixed mechanisms].


2006 ◽  
Vol 14 (2) ◽  
pp. 313-332 ◽  
Author(s):  
Daniel L. Schwartz ◽  
Taylor Martin

If distributed cognition is to become a general analytic frame, it needs to handle more aspects of cognition than just highly efficient problem solving. It should also handle learning. We identify four classes of distributed learning: induction, repurposing, symbiotic tuning, and mutual adaptation. The four classes of distributed learning fit into a two-dimensional space defined by the stability and adaptability of individuals and their environments. In all four classes of learning, people and their environments are highly interdependent during initial learning. At the same time, we present evidence indicating that certain types of interdependence in early learning, most notably mutual adaptation, can help prepare people to be less dependent on their immediate environment and more adaptive when they confront new environments. We also describe and test examples of learning technologies that implement mutual adaptation.


2009 ◽  
Vol 29 (39) ◽  
pp. 12115-12124 ◽  
Author(s):  
M. A. Kheirbek ◽  
J. P. Britt ◽  
J. A. Beeler ◽  
Y. Ishikawa ◽  
D. S. McGehee ◽  
...  

2015 ◽  
Vol 21 (10) ◽  
pp. 802-815 ◽  
Author(s):  
Patrick J. O’Connor ◽  
Phillip D. Tomporowski ◽  
Rodney K. Dishman

AbstractThe aim of this study was to examine whether people differed in change in performance across the first five blocks of an online flanker task and whether those trajectories of change were associated with self-reported aerobic or resistance exercise frequency according to age. A total of 8752 men and women aged 13–89 completed a lifestyle survey and five 45-s games (each game was a block of ~46 trials) of an online flanker task. Accuracy of the congruent and incongruent flanker stimuli was analyzed using latent class and growth curve modeling adjusting for time between blocks, whether the blocks occurred on the same or different days, education, smoking, sleep, caffeinated coffee and tea use, and Lumosity training status (“free play” or part of a “daily brain workout”). Aerobic and resistance exercise were unrelated to first block accuracies. For the more cognitively demanding incongruent flanker stimuli, aerobic activity was positively related to the linear increase in accuracy [B=0.577%, 95% confidence interval (CI), 0.112 to 1.25 per day above the weekly mean of 2.8 days] and inversely related to the quadratic deceleration of accuracy gains (B=−0.619% CI, −1.117 to −0.121 per day). An interaction of aerobic activity with age indicated that active participants younger than age 45 had a larger linear increase and a smaller quadratic deceleration compared to other participants. Age moderates the association between self-reported aerobic, but not self-reported resistance, exercise and changes in cognitive control that occur with practice during incongruent presentations across five blocks of a 45-s online, flanker task. (JINS, 2015, 21, 802–815)


1951 ◽  
Vol 3 (3) ◽  
pp. 99-110 ◽  
Author(s):  
C. B. Gibbs

Matched groups of subjects were used to test the learning and transfer effects that follow changes in the display, the muscular reactions and the directional relationship between stimulus and response in a tracking task. Two arrangements were compared in the relationship studies: one arrangement of the stimuli and reactions was similar, and the other was opposed to that used in many every-day skills. The familiar arrangement was easier to learn. There was high positive transfer from the unfamiliar to the familiar, and little transfer from the familiar to the unfamiliar. The physical dimensions of the display were varied to give two tasks with different stimuli. The initial learning times were equal for both tasks, and the transfer between them was high, positive, and equal. Two further tasks varied in the extent, speed and force of the required muscular movements. One task proved more difficult to learn initially, and there was greater transfer from the difficult to the easy task than from the easy to the difficult. A further experiment tested the effects of changing the difficulty of a tracking course, and it was found that learning was more rapid on the more difficult course. A difference in difficulty between two tasks, therefore, determined both the amount of transfer between them and the rate of learning the tasks. New measures were developed to test the transfer between tasks of unequal content, and the effect of such inequalities upon the rate of learning. The findings are discussed, as are their possible implications for transfer measurement and their bearing upon existing theories of transfer.


Sign in / Sign up

Export Citation Format

Share Document