scholarly journals The Role of Muscle Spindle Feedback in the Guidance of Hindlimb Movement by the Ipsilateral Forelimb during Locomotion in Mice

eNeuro ◽  
2021 ◽  
pp. ENEURO.0432-21.2021
Author(s):  
William P. Mayer ◽  
Turgay Akay
1993 ◽  
Vol 70 (4) ◽  
pp. 1578-1584 ◽  
Author(s):  
P. DiZio ◽  
C. E. Lathan ◽  
J. R. Lackner

1. In the oculobrachial illusion, a target light attached to the unseen stationary hand is perceived as moving and changing spatial position when illusory motion of the forearm is elicited by brachial muscle vibration. Our goal was to see whether we could induce apparent motion and displacement of two retinally fixed targets in opposite directions by the use of oculobrachial illusions. 2. We vibrated both biceps brachii, generating illusory movements of the two forearms in opposite directions, and measured any associated changes in perceived distance between target lights on the unseen stationary hands. The stability of visual fixation of one of the targets was also measured. 3. The seen distance between the stationary targets increased significantly when vibration induced an illusory increase in felt distance between the hands, both with binocular and monocular viewing. 4. Subjects maintained fixation accuracy equally well during vibration-induced illusory increases in visual target separation and in a no-vibration control condition. Fixation errors were not correlated with the extent or direction of illusory visual separation. 5. These findings indicate that brachial muscle spindle signals can contribute to an independent representation of felt target location in head-centric coordinates that can be interrelated with a visual representation of target location generated by retinal and oculomotor signals. 6. A model of how these representations are interrelated is proposed, and its relation to other intersensory interactions is discussed.


2006 ◽  
Vol 96 (4) ◽  
pp. 1772-1788 ◽  
Author(s):  
Milana P. Mileusnic ◽  
Ian E. Brown ◽  
Ning Lan ◽  
Gerald E. Loeb

We constructed a physiologically realistic model of a lower-limb, mammalian muscle spindle composed of mathematical elements closely related to the anatomical components found in the biological spindle. The spindle model incorporates three nonlinear intrafusal fiber models (bag1, bag2, and chain) that contribute variously to action potential generation of primary and secondary afferents. A single set of model parameters was optimized on a number of data sets collected from feline soleus muscle, accounting accurately for afferent activity during a variety of ramp, triangular, and sinusoidal stretches. We also incorporated the different temporal properties of fusimotor activation as observed in the twitchlike chain fibers versus the toniclike bag fibers. The model captures the spindle's behavior both in the absence of fusimotor stimulation and during activation of static or dynamic fusimotor efferents. In the case of simultaneous static and dynamic fusimotor efferent stimulation, we demonstrated the importance of including the experimentally observed effect of partial occlusion. The model was validated against data that originated from the cat's medial gastrocnemius muscle and were different from the data used for the parameter determination purposes. The validation record included recently published experiments in which fusimotor efferent and spindle afferent activities were recorded simultaneously during decerebrate locomotion in the cat. This model will be useful in understanding the role of the muscle spindle and its fusimotor control during both natural and pathological motor behavior.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Serena Ortiz ◽  
Enoch Kim ◽  
Kimberly Than ◽  
Cebrina Bustos ◽  
Sarah Chu ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11131 ◽  
Author(s):  
James P. Lund ◽  
Somayeh Sadeghi ◽  
Tuija Athanassiadis ◽  
Nadia Caram Salas ◽  
François Auclair ◽  
...  

2018 ◽  
Vol 120 (5) ◽  
pp. 2484-2497 ◽  
Author(s):  
William P. Mayer ◽  
Andrew J. Murray ◽  
Susan Brenner-Morton ◽  
Thomas M. Jessell ◽  
Warren G. Tourtellotte ◽  
...  

Terrestrial animals increase their walking speed by increasing the activity of the extensor muscles. However, the mechanism underlying how this speed-dependent amplitude modulation is achieved remains obscure. Previous studies have shown that group Ib afferent feedback from Golgi tendon organs that signal force is one of the major regulators of the strength of muscle activity during walking in cats and humans. In contrast, the contribution of group Ia/II afferent feedback from muscle spindle stretch receptors that signal angular displacement of leg joints is unclear. Some studies indicate that group II afferent feedback may be important for amplitude regulation in humans, but the role of muscle spindle feedback in regulation of muscle activity strength in quadrupedal animals is very poorly understood. To examine the role of feedback from muscle spindles, we combined in vivo electrophysiology and motion analysis with mouse genetics and gene delivery with adeno-associated virus. We provide evidence that proprioceptive sensory feedback from muscle spindles is important for the regulation of the muscle activity strength and speed-dependent amplitude modulation. Furthermore, our data suggest that feedback from the muscle spindles of the ankle extensor muscles, the triceps surae, is the main source for this mechanism. In contrast, muscle spindle feedback from the knee extensor muscles, the quadriceps femoris, has no influence on speed-dependent amplitude modulation. We provide evidence that proprioceptive feedback from ankle extensor muscles is critical for regulating muscle activity strength as gait speed increases. NEW & NOTEWORTHY Animals upregulate the activity of extensor muscles to increase their walking speed, but the mechanism behind this is not known. We show that this speed-dependent amplitude modulation requires proprioceptive sensory feedback from muscle spindles of ankle extensor muscle. In the absence of muscle spindle feedback, animals cannot walk at higher speeds as they can when muscle spindle feedback is present.


2005 ◽  
Vol 21 ◽  
pp. S60
Author(s):  
P.H. Ellaway ◽  
A. Taylor ◽  
D. Durbaba ◽  
S.R. Rawlinson

2020 ◽  
Vol 21 (15) ◽  
pp. 5520
Author(s):  
Anna Kwaśniewska ◽  
Krzysztof Miazga ◽  
Henryk Majczyński ◽  
Larry M. Jordan ◽  
Małgorzata Zawadzka ◽  
...  

Intraspinal grafting of serotonergic (5-HT) neurons was shown to restore plantar stepping in paraplegic rats. Here we asked whether neurons of other phenotypes contribute to the recovery. The experiments were performed on adult rats after spinal cord total transection. Grafts were injected into the sub-lesional spinal cord. Two months later, locomotor performance was tested with electromyographic recordings from hindlimb muscles. The role of noradrenergic (NA) innervation was investigated during locomotor performance of spinal grafted and non-grafted rats using intraperitoneal application of α2 adrenergic receptor agonist (clonidine) or antagonist (yohimbine). Morphological analysis of the host spinal cords demonstrated the presence of tyrosine hydroxylase positive (NA) neurons in addition to 5-HT neurons. 5-HT fibers innervated caudal spinal cord areas in the dorsal and ventral horns, central canal, and intermediolateral zone, while the NA fiber distribution was limited to the central canal and intermediolateral zone. 5-HT and NA neurons were surrounded by each other’s axons. Locomotor abilities of the spinal grafted rats, but not in control spinal rats, were facilitated by yohimbine and suppressed by clonidine. Thus, noradrenergic innervation, in addition to 5-HT innervation, plays a potent role in hindlimb movement enhanced by intraspinal grafting of brainstem embryonic tissue in paraplegic rats.


2013 ◽  
Vol 48 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Alan R. Needle ◽  
Swanik Charles B. (Buz) ◽  
William B. Farquhar ◽  
Stephen J. Thomas ◽  
William C. Rose ◽  
...  

Context: Ankle sprains are common in athletes, with functional ankle instability (FAI) developing in approximately half of cases. The relationship between laxity and FAI has been inconclusive, suggesting that instability may be caused by insufficient sensorimotor function and dynamic restraint. Research has suggested that deafferentation of peripheral mechanoreceptors potentially causes FAI; however, direct evidence confirming peripheral sensory deficits has been elusive because previous investigators relied upon subjective proprioceptive tests. Objective: To develop a method for simultaneously recording peripheral sensory traffic, joint forces, and laxity and to quantify differences between healthy ankles and those with reported instability. Design: Case-control study. Setting: University laboratory. Patients or Other Participants: A total of 29 participants (age = 20.9 ± 2.2 years, height = 173.1 ± 8.9 cm, mass = 74.5 ± 12.7 kg) stratified as having healthy (HA, n = 19) or unstable ankles (UA, n = 10). Intervention(s): Sensory traffic from muscle spindle afferents in the peroneal nerve was recorded with microneurography while anterior (AP) and inversion (IE) stress was applied to ligamentous structures using an ankle arthrometer under test and sham conditions. Main Outcome Measure(s): Laxity (millimeters or degrees) and amplitude of sensory traffic (percentage) were determined at 0, 30, 60, 90, and 125 N of AP force and at 0, 1, 2, 3, and 4 Nm of IE torque. Two-factor repeated-measures analyses of variance were used to determine differences between groups and conditions. Results: No differences in laxity were observed between groups (P > .05). Afferent traffic increased with increased force and torque in test trials (P < .001). The UA group displayed decreased afferent activity at 30 N of AP force compared with the HA group (HA: 30.2% ± 9.9%, UA: 17.1% ± 16.1%, P < .05). Conclusions: The amplitude of sensory traffic increased simultaneously with greater ankle motion and loading, providing evidence of the integrated role of capsuloligamentous and musculotendinous mechanoreceptors in maintaining joint sensation. Unstable ankles demonstrated diminished afferent traffic at low levels of force, suggesting the early detection of joint loading may be compromised.


Sign in / Sign up

Export Citation Format

Share Document