scholarly journals Synaptic Tagging and Capture: Differential Role of Distinct Calcium/Calmodulin Kinases in Protein Synthesis-Dependent Long-Term Potentiation

2010 ◽  
Vol 30 (14) ◽  
pp. 4981-4989 ◽  
Author(s):  
R. L. Redondo ◽  
H. Okuno ◽  
P. A. Spooner ◽  
B. G. Frenguelli ◽  
H. Bito ◽  
...  
Author(s):  
Radha Raghuraman ◽  
Amrita Benoy ◽  
Sreedharan Sajikumar

This chapter discusses the role of protein synthesis in the maintenance of long-term potentiation (LTP) and its associative properties, synaptic tagging and capture, which are cellular correlates of long-term memory. Starting from a brief overview of the early and late phases of LTP, the chapter discusses various existing models for synaptic activity-induced protein synthesis and its roles in late-LTP. The synaptic tagging and capture and cross-tagging theories are given emphasis, along with the elucidation of local dendritic protein synthesis and its significance in the maintenance of LTP. Inverse synaptic tagging, synaptic competition for plasticity-related proteins, and metaplasticity are also covered. The importance of the balance between proteasomal degradation and synthesis of plasticity-related proteins in persistent potentiation is briefly discussed. This chapter touches upon the physiological implications of epigenetic regulation in the control of neuronal functions and the molecular mechanisms within the neurons that translate epigenetic changes into long-lasting responses.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


2017 ◽  
Vol 23 (6) ◽  
pp. 587-604 ◽  
Author(s):  
Julien Gibon ◽  
Philip A. Barker

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.


1996 ◽  
Vol 3 (1) ◽  
pp. 42-48 ◽  
Author(s):  
D K Selig ◽  
M R Segal ◽  
D Liao ◽  
R C Malenka ◽  
R Malinow ◽  
...  

2000 ◽  
Vol 20 (24) ◽  
pp. 9272-9276 ◽  
Author(s):  
Albert M. Borroni ◽  
Harlan Fichtenholtz ◽  
Brian L. Woodside ◽  
Timothy J. Teyler

Sign in / Sign up

Export Citation Format

Share Document