Protein Synthesis and Synapse Specificity in Functional Plasticity

Author(s):  
Radha Raghuraman ◽  
Amrita Benoy ◽  
Sreedharan Sajikumar

This chapter discusses the role of protein synthesis in the maintenance of long-term potentiation (LTP) and its associative properties, synaptic tagging and capture, which are cellular correlates of long-term memory. Starting from a brief overview of the early and late phases of LTP, the chapter discusses various existing models for synaptic activity-induced protein synthesis and its roles in late-LTP. The synaptic tagging and capture and cross-tagging theories are given emphasis, along with the elucidation of local dendritic protein synthesis and its significance in the maintenance of LTP. Inverse synaptic tagging, synaptic competition for plasticity-related proteins, and metaplasticity are also covered. The importance of the balance between proteasomal degradation and synthesis of plasticity-related proteins in persistent potentiation is briefly discussed. This chapter touches upon the physiological implications of epigenetic regulation in the control of neuronal functions and the molecular mechanisms within the neurons that translate epigenetic changes into long-lasting responses.

2010 ◽  
Vol 30 (14) ◽  
pp. 4981-4989 ◽  
Author(s):  
R. L. Redondo ◽  
H. Okuno ◽  
P. A. Spooner ◽  
B. G. Frenguelli ◽  
H. Bito ◽  
...  

2005 ◽  
Vol 28 (1) ◽  
pp. 65-66
Author(s):  
Clive R. Bramham

Insights into the role of sleep in the molecular mechanisms of memory consolidation may come from studies of activity-dependent synaptic plasticity, such as long-term potentiation (LTP). This commentary posits a specific contribution of sleep to LTP stabilization, in which mRNA transported to dendrites during wakefulness is translated during sleep. Brain-derived neurotrophic factor may drive the translation of newly transported and resident mRNA.


2015 ◽  
Vol 26 (5) ◽  
pp. 507-546 ◽  
Author(s):  
Abdul-Karim Abbas ◽  
Agnès Villers ◽  
Laurence Ris

AbstractLong-term potentiation (LTP) remains the most widely accepted model for learning and memory. In accordance with this belief, the temporal differentiation of LTP into early and late phases is accepted as reflecting the differentiation of short-term and long-term memory. Moreover, during the past 30 years, protein synthesis inhibitors have been used to separate the early, protein synthesis-independent (E-LTP) phase and the late, protein synthesis-dependent (L-LTP) phase. However, the role of these proteins has not been formally identified. Additionally, several reports failed to show an effect of protein synthesis inhibitors on LTP. In this review, a detailed analysis of extensive behavioral and electrophysiological data reveals that the presumed correspondence of LTP temporal phases to memory phases is neither experimentally nor theoretically consistent. Moreover, an overview of the time courses of E-LTP in hippocampal slices reveals a wide variability ranging from <1 h to more than 5 h. The existence of all these conflictual findings should lead to a new vision of LTP. We believe that the E-LTP vs. L-LTP distinction, established with protein synthesis inhibitor studies, reflects a false dichotomy. We suggest that the duration of LTP and its dependency on protein synthesis are related to the availability of a set of proteins at synapses and not to the de novo synthesis of plasticity-related proteins. This availability is determined by protein turnover kinetics, which is regulated by previous and ongoing electrical activities and by energy store availability.


Author(s):  
Ishanee Das Sharma

This review aims to clarify and classify memory from psychological and neuroscientific point of view, delving into the molecular mechanisms taking place as well. The main forms of memory are sensory memory, short term memory and long-term memory. We also try to specify the flow of information through various memory models. The concept of synaptic plasticity and long-term potentiation is highlighted, with special focus on the physiological parts of the brain that are involved in memory storage. Overall, this study will help expand our knowledge on the intrinsic details of memory storage and the functioning of our brain.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Clemens Jaitner ◽  
Chethan Reddy ◽  
Andreas Abentung ◽  
Nigel Whittle ◽  
Dietmar Rieder ◽  
...  

SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.


Neuroforum ◽  
2018 ◽  
Vol 24 (3) ◽  
pp. A127-A132
Author(s):  
Marina Mikhaylova ◽  
Michael R. Kreutz

Abstract The storage of memory requires at least in part maintenance of long-term potentiation (LTP) in dendritic spine synapses. Neighboring synapses are frequently arranged into functional clusters. At present, it is still unclear how these clusters evolve, why they are stable for longer time periods and how spines interact within a cluster. In this review, we will provide an overview of current concepts of clustered plasticity and we will discuss cellular as well as molecular mechanisms that might be relevant for spine stability and associated functions in the context of LTP. We will propose that dynamics of initially formed clusters depend on compartmentalization of dendrites and that activity-dependent gene expression kicks in to preserve differences in synaptic weight. We will discuss how mechanisms of synaptic tagging, the presence of secretory organelles in dendrites and the incorporation of synaptic scaling factors that are encoded by immediate early genes interact to preserve clustered plasticity.


2014 ◽  
Vol 369 (1633) ◽  
pp. 20130152 ◽  
Author(s):  
Efrén Álvarez-Salvado ◽  
Vicente Pallarés ◽  
Andrea Moreno ◽  
Santiago Canals

Neurons are able to express long-lasting and activity-dependent modulations of their synapses. This plastic property supports memory and conveys an extraordinary adaptive value, because it allows an individual to learn from, and respond to, changes in the environment. Molecular and physiological changes at the cellular level as well as network interactions are required in order to encode a pattern of synaptic activity into a long-term memory. While the cellular mechanisms linking synaptic plasticity to memory have been intensively studied, those regulating network interactions have received less attention. Combining high-resolution fMRI and in vivo electrophysiology in rats, we have previously reported a functional remodelling of long-range hippocampal networks induced by long-term potentiation (LTP) of synaptic plasticity in the perforant pathway. Here, we present new results demonstrating an increased bilateral coupling in the hippocampus specifically supported by the mossy cell commissural/associational pathway in response to LTP. This fMRI-measured increase in bilateral connectivity is accompanied by potentiation of the corresponding polysynaptically evoked commissural potential in the contralateral dentate gyrus and depression of the inactive convergent commissural pathway to the ipsilateral dentate. We review these and previous findings in the broader context of memory consolidation.


Sign in / Sign up

Export Citation Format

Share Document