scholarly journals Beta-Band Activity during Motor Planning Reflects Response Uncertainty

2010 ◽  
Vol 30 (34) ◽  
pp. 11270-11277 ◽  
Author(s):  
C. Tzagarakis ◽  
N. F. Ince ◽  
A. C. Leuthold ◽  
G. Pellizzer
Author(s):  
Charidimos Tzagarakis ◽  
Andrew Thompson ◽  
Robert D. Rogers ◽  
Giuseppe Pellizzer

2021 ◽  
pp. 155005942110334
Author(s):  
Parham Jalali ◽  
Nasrin Sho’ouri

Resent research has shown that electroencephalography (EEG) theta/beta ratio (TBR) in cases with attention deficit hyperactivity disorder (ADHD) has thus far been reported lower than that in healthy individuals. Accordingly, utilizing EEG-TBR as a biomarker to diagnose ADHD has been called into question. Besides, employing known protocol to reduce EEG-TBR in the vertex (Cz) channel to treat ADHD via neurofeedback (NFB) has been doubted. The present study was to propose a new NFB treatment protocol to manage ADHD using EEG signals from 30 healthy controls and 30 children with ADHD through an attention-based task and to calculate relative power in their different frequency bands. Then, the most significant distinguishing features of EEG signals from both groups were determined via a genetic algorithm (GA). The results revealed that EEG-TBR values in children with ADHD were lower compared with those in healthy peers; however, such a difference was not statistically significant. Likewise, inhibiting alpha band activity and enhancing delta one in F7 or T5 channels was proposed as a new NFB treatment protocol for ADHD. No significant increase in EEG-TBR in the Cz channel among children with ADHD casts doubt on the effectiveness of using EEG-TBR inhibitory protocols in the Cz channel. Consequently, it was proposed to apply the new protocol along with reinforced beta-band activity to treat or reduce ADHD symptoms.


2021 ◽  
Author(s):  
Milou J.L. van Helvert ◽  
Leonie Oostwoud Wijdenes ◽  
Linda Geerligs ◽  
W. Pieter Medendorp

AbstractWhile beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants’ choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion-artifact-free time window, the location of the upcoming target was cued 1000-1500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cueing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cueing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty, similar to target uncertainty, selectively modulates beta-band power during motor planning.New & NoteworthyWhile reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cueing paradigm, that the power in this frequency band, but not in the alpha or theta-band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Karuna Subramaniam ◽  
Leighton B. N. Hinkley ◽  
Danielle Mizuiri ◽  
Hardik Kothare ◽  
Chang Cai ◽  
...  

2020 ◽  
Vol 6 (49) ◽  
pp. eabb1141
Author(s):  
Assaf Breska ◽  
Richard B. Ivry

Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, providing the requisite modulation to optimize behavior.


2011 ◽  
Vol 23 (10) ◽  
pp. 2920-2934 ◽  
Author(s):  
John Christopher Mizelle ◽  
Teresa Tang ◽  
Nikta Pirouz ◽  
Lewis A. Wheaton

Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools. A separate group of subjects engaged in video-based observation (indirect exposure) of the same tools to understand how these learning strategies create representations. To assess neural mechanisms engaged for pantomime after different modes of exposure, a pantomime task was performed for both tools while recording neural activation with high-density EEG. Motor planning–related neural activation was evaluated using beta band (13–22 Hz) event-related desynchronization. Hemispheric dominance was assessed, and activation maps were generated to understand topography of activations. Comparison of conditions (effects of tool familiarity and tool exposure) was performed with standardized low-resolution brain electromagnetic tomography. Novel tool pantomime following direct exposure resulted in greater activations of bilateral parietofrontal regions. Activations following indirect training varied by tool familiarity; pantomime of the familiar tool showed greater activations in left parietofrontal areas, whereas the novel tool showed greater activations at right temporoparieto-occipital areas. These findings have relevance to the mechanisms for understanding motor-related behaviors involved in new tools that we have little or no experience with and can extend into advancing theories of tool use motor learning.


Sign in / Sign up

Export Citation Format

Share Document