Effects of 2 intramammary antimicrobial formulations on control of mastitis during the dry-period and performance of dairy cows

2021 ◽  
Vol 37 (5) ◽  
pp. 635-640
Author(s):  
Ahmadreza Mirzaei ◽  
Elizabeth A. Cox ◽  
Scott T. Kieser ◽  
Barbara Petersen ◽  
Todd R. Bilby ◽  
...  
2017 ◽  
Vol 95 (12) ◽  
pp. 5208-5217 ◽  
Author(s):  
A. L. A. Scanavez ◽  
B. Fragomeni ◽  
L. Rocha ◽  
B. E. Voelz ◽  
L. E. Hulbert ◽  
...  

2021 ◽  
Vol 53 (2) ◽  
Author(s):  
A. Boustan ◽  
V. Vahedi ◽  
M. Abdi Farab ◽  
H. Karami ◽  
R. Seyedsharifi ◽  
...  

2005 ◽  
Vol 88 (10) ◽  
pp. 3530-3541 ◽  
Author(s):  
J.B. Andersen ◽  
T.G. Madsen ◽  
T. Larsen ◽  
K.L. Ingvartsen ◽  
M.O. Nielsen

1996 ◽  
Vol 63 (2) ◽  
pp. 201-213 ◽  
Author(s):  
J. M. Moorby ◽  
R. J. Dewhurst ◽  
S. Marsden

AbstractEffects of feeding a protein supplement to dairy cows during the dry period on performance during the following lactation were investigated in two experiments. Holstein-Friesian cows were paired towards the end of lactation, and, after drying off, one of each pair received a typical dry cow management regime of ad libitum grass silage (experiment 1), or a mix of grass silage and distillers' grains or pressed beet pulp (experiment 2). The other cows were offered restricted access to the same basal diet, together with ad libitum access to barley straw and 0·5 kg/day high protein maize gluten meal. During the following lactation, animals from both groups were treated without reference to dry period treatment, and were offered equal access to the same lactation diet. Data were analysed by analysis of variance of experiment means and by parallel curve analysis using sample means. In experiment 1, milk yields were similar (27·2 v. 27·9 (s.e.d. 2·12) kg/day for control and supplemented animals respectively) but milk protein yields, and hence concentrations, were significantly higher (P < 0·001) from supplemented animals (28·9 v. 31·8 (s.e.d. 0·58) g/kg). In experiment 2, milk yields were significantly higher (P < 0·001) from supplemented animals (mean 33·3 v. 35·4 (s.e.d. 1·66) kg/day; however, milk protein yields were also significantly increased (P < 0·001) and the change in milk protein concentration was small. No difference in dry-matter intake was recorded in a subset of animals during early lactation in experiment 2. It is hypothesized that the maternal labile body protein pool was maintained or replenished during the dry period by the provision of the protein supplement, and that this had a significant effect on subsequent lactation performance.


2011 ◽  
Vol 68 (3) ◽  
pp. 301-307 ◽  
Author(s):  
Luciene Lignani Bitencourt ◽  
José Ricardo Martins Silva ◽  
Bruno Menezes Lopes de Oliveira ◽  
Gilson Sebastião Dias Júnior ◽  
Fernanda Lopes ◽  
...  

Dietary yeast supplementation may improve the digestive efficiency of ruminants, but responses depend on the yeast strain and the diet composition. Corn silage and citrus pulp are usual carbohydrate sources for dairy cows in southeast Brazil. This study evaluated the supplementation of dairy cows fedding on corn silage-citrus pulp-based diets with Saccharomyces cerevisiae CNCM I-1077 (Lallemand SAS, Toulouse, France). Twenty multiparous, midlactation Holstein cows were assigned to two treatments in crossover design. Treatments were: live yeast on oyster meal capable of supplying a daily minimum of 1 × 10(10) CFU per cow or oyster meal top-dressed at 10 g to the morning meal. Diet contained (% of dry matter): 16.8% crude protein, 30.9% neutral detergent fiber, 43.9% corn silage, 2% tifton hay, 14.4% steam flaked corn, 16.9% citrus pulp and 21.7% soybean meal. Yeast supplementation increased daily yields of milk (29.4 vs. 28.5 kg, p = 0.11), protein (0.939 vs. 0.908 kg, p = 0.05), and lactose (1.294 vs. 1.241 kg, p = 0.06), but did not affect milk fat contents (p = 0.59). Daily dry matter intake was 21.4 with yeast and 20.7 kg for the control (p = 0.11). Total tract apparent digestibility of the neutral detergent fiber was 48.1% with yeast and 43.2% for the control (p = 0.08). There was a trend for increased intake of digestible organic matter with yeast supplementation (p = 0.07). The positive milk protein yield response to yeast supplementation may have resulted from the increased fiber digestibility, but the response mechanism could not be elucidated.


Sign in / Sign up

Export Citation Format

Share Document