Nutritive value, silage fermentation characteristics, and aerobic stability of 3 round-baled, perennial-grass forages ensiled with or without a propionic-acid-based preservative

2021 ◽  
Vol 37 (3) ◽  
pp. 239-255
Author(s):  
Wayne K. Coblentz ◽  
Matthew S. Akins ◽  
Jason S. Cavadini
2013 ◽  
Vol 22 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Johan De Boever ◽  
Elien Dupon ◽  
Eva Wambacq ◽  
Joos Latré

 The effect of adding an inoculant containing Lactobacillus buchneri, L. plantarum and L. casei to wilted perennial ryegrass, harvested at four growth stages and ensiled for either 60 or 150 d on silage fermentation quality, chemical composition, rumen degradability of neutral detergent fibre (NDF) and organic matter (OM) and in vitro OM digestibility (OMd) was studied. Compared to the control silage, more sugars were fermented to lactic and acetic acid with the inoculant, resulting in a lower pH, less dry matter losses and protein degradation and a better aerobic stability. The effects of the additive on fermentation quality were more pronounced after 150 than after 60 d of ensiling, because the quality of the control silage was worse after long ensiling period. The treatment lowered NDF content of grass harvested at the first two growth stages by degrading cell walls to complex sugars, but had no effect on NDF degradability of the silage. The inoculant had no effect on rumen OM degradability nor on OMd after the short ensiling period, but increased the rumen OM degradability for the first two growth stages and OMd for all growth stages after long ensiling period.


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 177
Author(s):  
Shengnan Sun ◽  
Zhenping Hou ◽  
Qiuzhong Dai ◽  
Duanqin Wu

The aim of this study was to investigate the effects of the forage type and chop length of ramie (Boehmeria nivea (L.) Gaud.) silage on rumen fermentation and ruminal microbiota in black goats. Sixteen Liuyang black goats (22.35 ± 2.16 kg) were fed with the roughage of corn silage or ramie silage at chop lengths of 1, 2, or 3 cm. The Chao 1 index and the observed number of microbial species differed significantly between the corn and ramie silage groups (p < 0.05); however, Firmicutes (relative proportion: 34.99–56.68%), Bacteroidetes (27.41–47.73%), and Proteobacteria (1.44–3.92%) were the predominant phyla in both groups. The relative abundance of Verrucomicrobia (0.32–0.82%) was lowest for the 2 and 3 cm chop lengths (p < 0.05) and was negatively correlated with rumen pH and propionic acid concentration (p < 0.05), but positively correlated with the ratio of acetic acid to propionic acid (p < 0.05). The ramie silage fermentation quality was highest for the 1 cm chop length, suggesting that moderate chopping produces optimal quality silage.


1998 ◽  
Vol 81 (8) ◽  
pp. 2185-2192 ◽  
Author(s):  
G.E. Higginbotham ◽  
S.C. Mueller ◽  
K.K. Bolsen ◽  
E.J. DePeters

2020 ◽  
Vol 98 (11) ◽  
Author(s):  
Prem Woli ◽  
Francis M Rouquette ◽  
Charles R Long ◽  
Luis O Tedeschi ◽  
Guillermo Scaglia

Abstract In forage-animal nutrition modeling, diet energy is estimated mainly from the forage total digestible nutrients (TDN). As digestibility trials are expensive, TDN is usually estimated using summative equations. Early summative equations assumed a fixed coefficient to compute digestible fiber using the lignin-to-neutral detergent fiber (NDF) ratio. Subsequently, a structural coefficient (φ) was added to the summative equations to reflect an association between lignin and cell wall components. Additional modifications to the summative equations assumed a constant φ value, and they have been used as a standard method by many commercial laboratories and scientists. For feeds with nutritive values that do not change much over time, a constant φ value may suffice. However, for forages with nutritive values that keep changing during the grazing season owing to changes in weather and plant maturity, a constant φ value may add a systematic bias to prediction because it is associated with the variable lignin-to-NDF ratio. In this study, we developed a model to estimate φ as a function of the day of the year by using the daily TDN values of bermudagrass [Cynodon dactylon (L.) Pers.], a popular warm-season perennial grass in the southern United States. The variable φ model was evaluated by using it in the TDN equation and comparing the estimated values with the observed ones obtained from several locations. Values of the various measures of fit used—the Willmott index (WI), the modeling efficiency (ME), R2, root mean square error (RMSE), and percent error (PE)—showed that using the variable φ vis-à-vis the constant φ improved the TDN equation significantly. The WI, ME, R2, RMSE, and PE values of 0.94, 0.80, 0.80, 2.5, and 4.7, respectively, indicated that the TDN equation with the variable φ model was able to mimic the observed values of TDN satisfactorily. Unlike the constant φ, the variable φ predicted more closely the forage nutritive value throughout the grazing season. The variable φ model may be useful to forage-beef modeling in accurately reflecting the impacts of plant maturity and weather on daily forage nutritive value and animal performance.


Author(s):  
Ali Ameen Saeed ◽  
Saja Intisar Abid

This study was conducted in Nutrition Lab. to investigate the effect of the type and level of substitution of urea with ruminant manure, M (sheep, cow and buffalo) on basis of nitrogen (N) content on the nutritive value of rice straw silage (RSS). Accordingly silages were nominated as, S-RSS, C-RSS and B-RSS. Urea (U) was substituted with dried manure at 6 combinations, 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50 of U:M. Silage samples were prepared by treating chopped straw with pre-treated solution contained 10% low quality debis and 2% urea. Results showed that lower (P˂0.01) DM loss (11.4%) was observed in S-RSS, and with addition of urea only (3.6%).        Samples of S-RSS and C-RSS recorded higher (P˂0.01) Fleig points (Fp) as compared with those prepared by the addition of B-RSS, 60.42, 55.58 and 49.59 respectively. Reduction (P˂0.01) in this parameter was noticed in samples prepared with a combination of 100:0. Aerobic stability (AS) was a reduced (P˂0.01) in samples prepared by addition of S-RSS by 15 and 13 hours in comparison with samples of C-RSS and B-RSS respectively. Samples prepared with combination of 100:0 were prior (P˂0.01) as compared with other samples.        Results also showed an increase (P˂0.01) in in vitro digestibility of organic matter (IVOMD) in samples of S-RSS in comparison with samples prepared by addition of C-RSS and B-RSS, 49.99, 44.59 and 42.77% respectively. Samples prepared with combination of 100:0 recorded lower (P˂0.05) in vitro digestibility of dry matter (IVDMD) as compared with combinations of 70:30 and 60:40 of U: M, 40.52, 45.36 and 45.94% respectively.


2021 ◽  
Vol 9 (2) ◽  
pp. 225-234
Author(s):  
Liuxing Xu ◽  
Zhaohong Xu ◽  
Mingxia Chen ◽  
Jianguo Zhang

Whole-crop wheat (WCW) is rich in nutrients and is widely used as a forage crop. This study consisted of 2 experiments: Experiment 1 studied the yield, nutritive value and silage quality of WCW at 3 seeding rates (320 kg/ha, S320; 385 kg/ha, S385; and 450 kg/ha, S450) and different fertilizing times, i.e. 60% at seedling stage and the remaining 40% at the jointing stage vs. heading stage; and Experiment 2 examined the yield, nutritive value and silage quality of WCW receiving different fertilizer types, i.e. urea, compound fertilizer (N:P:K) and urea + compound fertilizer (all iso-nitrogenous). With the increased seeding rate, dry matter (DM) and crude protein (CP) yields tended to increase, but relative feed value tended to decrease. Experiment 1: there was no significant interaction between time of applying the second fertilizer dose and seeding rate in terms of concentrations of CP, crude fiber, ether extract, crude ash, nitrogen-free extract, neutral detergent fiber (NDF) and acid detergent fiber (ADF) in wheat (P>0.05). However, a significant interaction between fertilizing time and seeding rate was observed in terms of silage fermentation quality (pH, lactic acid, butyric acid and NH3-N concentrations) (P<0.05). Experiment 2: DM yield, CP yield and concentrations of CP, ADF and water-soluble carbohydrate were not affected by fertilizer type (P>0.05). Fertilizer type had significant effects on pH of silage and concentrations of organic acids (except propionic acid) and NH3-N in WCW silage (P<0.05). Under the present study conditions, considering DM yield, nutrient composition and silage fermentation quality, an optimal seeding rate of wheat for forage appears to be about 385 kg/ha. N fertilizer should be applied at the seedling stage and jointing stage. Although applying a mixture of urea and compound fertilizer had no significant effects on yield and nutritive value of WCW relative to applying urea alone, it did improve silage fermentation quality. Results may differ on different soils.


Sign in / Sign up

Export Citation Format

Share Document