XRD line profile analysis of calcite powders produced by high energy milling

2020 ◽  
Vol 321 ◽  
pp. 03026
Author(s):  
K. Yamanaka ◽  
A. Kuroda ◽  
M. Ito ◽  
M. Mori ◽  
T. Shobu ◽  
...  

In this study, the tensile deformation behavior of an electron beam melted Ti−6Al−4V alloy was examined by in situ X-ray diffraction (XRD) line-profile analysis. The as-built Ti−6Al−4V alloy specimen showed a fine acicular microstructure that was produced through the decomposition of the α′-martensite during the post-melt exposure to high temperatures. Using high-energy synchrotron radiation, XRD line-profile analysis was successfully applied for examining the evolution of dislocation structures not only in the α-matrix but also in the nanosized, low-fraction β-phase precipitates located at the interfaces between the α-laths. The results indicated that the dislocation density was initially higher in the β-phase and an increased dislocation density with increasing applied tensile strain was quantitatively captured in each constitutive phase. It can be thus concluded that the EBM Ti−6Al−4V alloy undergoes a cooperative plastic deformation between the constituent phases in the duplex microstructure. These results also suggested that XRD line-profile analysis combined with highenergy synchrotron XRD measurements can be utilized as a powerful tool for characterizing duplex microstructures in titanium alloys.


2006 ◽  
Vol 2006 (suppl_23_2006) ◽  
pp. 129-134 ◽  
Author(s):  
E. Schafler ◽  
K. Nyilas ◽  
S. Bernstorff ◽  
L. Zeipper ◽  
M. Zehetbauer ◽  
...  

2014 ◽  
Vol 14 (8) ◽  
pp. 1037-1045 ◽  
Author(s):  
Fei Zhao ◽  
Gang Zhao ◽  
Gaspare Lo Curto ◽  
Hui-Juan Wang ◽  
Yu-Juan Liu ◽  
...  

2003 ◽  
Vol 60 (6) ◽  
pp. 919-922 ◽  
Author(s):  
K. P. Sao ◽  
B. K. Samantaray ◽  
S. Bhattacherjee

2012 ◽  
Vol 60 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Adnan Hossain Khan ◽  
Parimal Bala ◽  
AFM Mustafizur Rahman ◽  
Mohammad Nurnabi

Glycine-Montmorillonite (Gly-MMT) composite has been synthesized through intercalation process using Na-Montmorillonite (Na- MMT) and glycine ethylester hydrochloride. Gly-MMT was employed for the synthesis of dipeptide (Gly-Gly-MMT). Microstructural parameters such as crystallite size, r.m.s. strain (<e2>1/2) and layer disorder parameters such as variation of interlayer spacing (g) and proportion of planes affected by such defects (?) of the samples have been calculated by X-ray line profile analysis. In comparison to Na-MMT the basal spacings (d001) of Gly-MMT and Gly-Gly-MMT were reduced by 2.4Å and 1.8Å respectively. The value of d001 of Gly-Gly-MMT (13.3 Å) suggests the monolayer orientation of dipeptide into interlayer spaces. It is also suggested that more homogeneity in the stacking of silicate layers is attained in Gly-Gly-MMT due to the increased chain length of the dipeptide and orientation in monolayer style.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10331Dhaka Univ. J. Sci. 60(1): 25-29, 2012 (January)


2006 ◽  
Vol 39 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Paolo Scardi ◽  
Matteo Leoni

Powder diffraction data collected on a nanocrystalline ceria sample within a round robin conducted by the IUCr Commission on Powder Diffraction were analysed by two alternative approaches: (i) whole-powder-pattern modelling based upon a fundamental microstructural parameters approach, and (ii) a traditional whole-powder-pattern fitting followed by Williamson–Hall and Warren–Averbach analysis. While the former gives results in close agreement with those of transmission electron microscopy, the latter tends to overestimate the domain size effect, providing size values about 20% smaller. The origin of the discrepancy can be traced back to a substantial inadequacy of profile fitting with Voigt profiles, which leads to systematic errors in the following line profile analysis by traditional methods. However, independently of the model, those systematic errors seem to have little effect on the volume-weighted mean size.


Sign in / Sign up

Export Citation Format

Share Document