An X-ray determination of the crystal structure of natural tetragonal natrolite

Author(s):  
F. Pechar

AbstractAn X-ray diffraction analysis was performed on a single crystal of natural tetragonal natrolite (Marianberg, Bohemia), (Na

Author(s):  
Süheyla Özbey ◽  
Nilgün Karalı ◽  
Aysel Gürsoy

AbstractIn this study 4-(3-coumarinyl)-3-benzyl-4-thi azolin-2-one 4-methylbenzylidenehydrazone 3 was synthesised. An independent proof of the thiazolylhydrazone structure of 3 was achieved by single crystal X-ray diffraction analysis. Elemental analyses and spectral data (IR,


2014 ◽  
Vol 70 (a1) ◽  
pp. C1560-C1560
Author(s):  
Fumiko Kimura ◽  
Wataru Oshima ◽  
Hiroko Matsumoto ◽  
Hidehiro Uekusa ◽  
Kazuaki Aburaya ◽  
...  

In pharmaceutical sciences, the crystal structure is of primary importance because it influences drug efficacy. Due to difficulties of growing a large single crystal suitable for the single crystal X-ray diffraction analysis, powder diffraction method is widely used. In powder method, two-dimensional diffraction information is projected onto one dimension, which impairs the accuracy of the resulting crystal structure. To overcome this problem, we recently proposed a novel method of fabricating a magnetically oriented microcrystal array (MOMA), a composite in which microcrystals are aligned three-dimensionally in a polymer matrix. The X-ray diffraction of the MOMA is equivalent to that of the corresponding large single crystal, enabling the determination of the crystal lattice parameters and crystal structure of the embedded microcrytals.[1-3] Because we make use of the diamagnetic anisotropy of crystal, those crystals that exhibit small magnetic anisotropy do not take sufficient three-dimensional alignment. However, even for these crystals that only align uniaxially, the determination of the crystal lattice parameters can be easily made compared with the determination by powder diffraction pattern. Once these parameters are determined, crystal structure can be determined by X-ray powder diffraction method. In this paper, we demonstrate possibility of the MOMA method to assist the structure analysis through X-ray powder and single crystal diffraction methods. We applied the MOMA method to various microcrystalline powders including L-alanine, 1,3,5-triphenyl benzene, and cellobiose. The obtained MOMAs exhibited well-resolved diffraction spots, and we succeeded in determination of the crystal lattice parameters and crystal structure analysis.


IUCrData ◽  
2019 ◽  
Vol 4 (11) ◽  
Author(s):  
Artem V. Malin ◽  
Sergei I. Ivlev ◽  
Roman V. Ostvald ◽  
Florian Kraus

Single crystals of rubidium tetrafluoridobromate(III), RbBrF4, were grown by melting and recrystallizing RbBrF4 from its melt. This is the first determination of the crystal structure of RbBrF4 using single-crystal X-ray diffraction data. We confirmed that the structure contains square-planar [BrF4]− anions and rubidium cations that are coordinated by F atoms in a square-antiprismatic manner. The compound crystallizes in the KBrF4 structure type. Atomic coordinates and bond lengths and angles were determined with higher precision than in a previous report based on powder X-ray diffraction data [Ivlev et al. (2015). Z. Anorg. Allg. Chem. 641, 2593–2598].


1994 ◽  
Vol 49 (9) ◽  
pp. 1263-1266 ◽  
Author(s):  
A. Franken ◽  
W. Preetz

By electrochemical oxidation of [B6H6]2- in the presence of nitrite ions and of the base DBU in dichlorom ethane solution the μ-nitroso-bis(pentahydrohexaborate) [B6H5(NO)B6H5]3- ion is formed and can be isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structure of the Cs salt has been determined from single crystal X-ray diffraction analysis. Cs3[B6H5(NO)B6H5] is orthorhombic, space group Pnma with a = 16.2303(13), b = 12.245(6), c = 25.444(2) Å. The unit cell contains three crystallographically independent anions with nearly C2v symmetry but differently distorted B6 cages


Author(s):  
A. E. Gunnæs ◽  
A. Olsen ◽  
P. T. Zagierski ◽  
B. Klewe ◽  
O. B. Karlsen ◽  
...  

AbstractThe crystal structure of


2017 ◽  
Vol 41 (7) ◽  
pp. 423-426 ◽  
Author(s):  
Chunhong Zheng ◽  
Guanming Liao ◽  
Congbin Fan ◽  
Renjie Wang ◽  
Shouzhi Pu

An indole-containing diarylethene with a trifluoromethyl function at the meta-position of the phenyl group attached to the thiophene moiety was synthesised. Its structure was determined by single-crystal X-ray diffraction analysis and its photochemical properties in solution and in the single crystalline phases were studied. The compound showed relatively high fluorescent modulation efficiency and cyclisation quantum yield.


1978 ◽  
Vol 33 (3) ◽  
pp. 265-267 ◽  
Author(s):  
Bernhard Nuber ◽  
Johannes Weiss ◽  
Karl Wieghardt

Abstract cis-Dioxo-dipicolinato-vanadate(V), Crystal Structure, IR, Raman The crystal structure of Cs[V(O)2(dipic)]·H2O (dipic = pyridine-2,6-dicarboxylate) has been determined by single crystal x-ray diffraction analysis. The compound crystallizes in the monoclinic space group P21/a, with cell constants a =737.8(3), 6=1917.5(5), c = 792.9(3) pm, β= 94.87(6)°, and Z = 4. The geometry about vanadium is a distorted trigonal bipyramid containing a cis-dioxo moiety (∢ O-V-O 109.9(3)°, V=O bond lengths 161.0(6) and 161.5(6) pm). Vibrational absorptions νs(V - 0) and νas(V=O) were found at 956 and 947 cm-1 in the IR and Raman spectrum, resp.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5400
Author(s):  
Roman D. Marchenko ◽  
Taisiya S. Sukhikh ◽  
Alexey A. Ryadun ◽  
Andrei S. Potapov

Coordination polymers with a new rigid ligand 1,3-bis(1,2,4-triazol-1-yl)adamantane (L) were prepared by its reaction with cadmium(II) or silver(I) nitrates. Crystal structure of the coordination polymers was determined using single-crystal X-ray diffraction analysis. Silver formed two-dimensional coordination polymer [Ag(L)NO3]n, in which metal ions are linked by 1,3-bis(1,2,4-triazol-1-yl)adamantane ligands, coordinated by nitrogen atoms at positions 2 and 4 of 1,2,4-triazole rings. Layers of the coordination polymer consist of rare 18- and 30-membered {Ag2L2} and {Ag4L4} metallocycles. Cadmium(II) nitrate formed two kinds of one-dimensional coordination polymers depending on the metal-to-ligand ratio used in the synthesis. Coordination polymer [Cd(L)2(NO3)2]n was obtained in case of a 1:2 M:L ratio, while for M:L = 2:1 product {[Cd(L)(NO3)2(CH3OH)]·0.5CH3OH}n was isolated. All coordination polymers demonstrated ligand-centered emission near 450 nm upon excitation at 370 nm.


1996 ◽  
Vol 51 (5) ◽  
pp. 744-746 ◽  
Author(s):  
A. Franken ◽  
H. Thomsen ◽  
W. P reetz

By reaction of conjuncto-[B6H6-B6H6]2- in alkaline solution with excess bromine the heptabromo-closo-heptaborate, [B7Br7]2 is formed. The crystal structure of [(CsH3N)2CH2][B7Br7] has been determined by single crystal X-ray diffraction analysis (monoclinic, space group P21/a with a = 15.0843(14), b = 9.8882(14), c = 17.057(2) Å, β = 114.039°(7)). In accordance with the D5h point symmetry, the anion shows two singlets at -23.3 and -0.1 ppm with the intensity ratio 2:5 in its 11B NMR spectrum.


1998 ◽  
Vol 54 (1) ◽  
pp. 18-28 ◽  
Author(s):  
D. L. Corker ◽  
A. M. Glazer ◽  
W. Kaminsky ◽  
R. W. Whatmore ◽  
J. Dec ◽  
...  

The room-temperature crystal structure of the perovskite lead hafnate PbHfO3 is investigated using both low-temperature single crystal X-ray diffraction (Mo Kα radiation, λ = 0.71069 Å) and polycrystalline neutron diffraction (D1A instrument, ILL, λ = 1.90788 Å). Single crystal X-ray data at 100 K: space group Pbam, a = 5.856 (1), b = 11.729 (3), c = 8.212 (2) Å, V = 564.04 Å3 with Z = 8, μ = 97.2 mm−1, F(000) = 1424, final R = 0.038, wR = 0.045 over 439 reflections with F >1.4σ(F). Polycrystalline neutron data at 383 K: a = 5.8582 (3), b = 11.7224 (5), c = 8.2246 (3) Å, V = 564.80 Å3 with χ2 = 1.62. Although lead hafnate has been thought to be isostructural with lead zirconate, no complete structure determination has been reported, as crystal structure analysis in both these materials is not straightforward. One of the main difficulties encountered is the determination of the oxygen positions, as necessary information lies in extremely weak l = 2n + 1 X-ray reflections. To maximize the intensity of these reflections the X-ray data are collected at 100 K with unusually long scans, a procedure which had previously been found successful with lead zirconate. In order to establish that no phase transitions exist between room temperature and 100 K, and hence that the collected X-ray data are relevant to the room-temperature structure, birefringence measurements for both PbZrO3 and PbHfO3 are also reported.


Sign in / Sign up

Export Citation Format

Share Document