Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5431
Author(s):  
Melanie Egli ◽  
Alicia Hartmann ◽  
Helena Rapp Wright ◽  
Keng Tiong Ng ◽  
Frédéric B. Piel ◽  
...  

The rapid source identification and environmental risk assessment (ERA) of hundreds of chemicals of emerging concern (CECs) in river water represent a significant analytical challenge. Herein, a potential solution involving a rapid direct-injection liquid chromatography–tandem mass spectrometry method for the quantitative determination of 102 CECs (151 qualitatively) in river water is presented and applied across six rivers in Germany and Switzerland at high spatial resolution. The method required an injection volume of only 10 µL of filtered sample, with a runtime of 5.5 min including re-equilibration with >10 datapoints per peak per transition (mostly 2 per compound), and 36 stable isotope-labelled standards. Performance was excellent from the low ng/L to µg/L concentration level, with 260 injections possible in any 24 h period. The method was applied in three separate campaigns focusing on the ERA of rivers impacted by wastewater effluent discharges (1 urban area in the Basel city region with 4 rivers, as well as 1 semi-rural and 1 rural area, each focusing on 1 river). Between 25 and 40 compounds were quantified directly in each campaign, and in all cases small tributary rivers showed higher CEC concentrations (e.g., up to ~4000 ng/L in total in the R. Schwarzach, Bavaria, Germany). The source of selected CECs could also be identified and differentiated from other sources at pre- and post- wastewater treatment plant effluent discharge points, as well as the effect of dilution downstream, which occurred over very short distances in all cases. Lastly, ERA for 41 CECs was performed at specific impacted sites, with risk quotients (RQs) at 1 or more sites estimated as high risk (RQ > 10) for 1 pharmaceutical (diclofenac), medium risk (RQ of 1–10) for 3 CECs (carbamazepine, venlafaxine, and sulfamethoxazole), and low risk (RQ = 0.1–1.0) for 7 CECs (i.e., RQ > 0.1 for 11 CECs in total). The application of high-throughput methods like this could enable a better understanding of the risks of CECs, especially in low flow/volume tributary rivers at scale and with high resolution.


2014 ◽  
Vol 60 (1) ◽  
pp. 260-268 ◽  
Author(s):  
Xianzhang Huang ◽  
David C Spink ◽  
Erasmus Schneider ◽  
Helen Ling ◽  
Alex J Rai ◽  
...  

Abstract BACKGROUND Unconjugated estriol (uE3) is routinely analyzed in clinical laboratories as risk assessment for Down syndrome. Immunoassays of various types are the most commonly used methods. The accuracies of RIAs and ELISAs for uE3 have been questioned, and to date there have been no independent studies investigating the accuracy of the relatively new chemiluminescent immunoassays. We developed and validated a liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for uE3 measurements in serum. METHODS Serum samples from patients in the second trimester of pregnancy were used, and uE3 concentrations were measured by LC-MS/MS and the Beckman Coulter Access® 2 and Siemens IMMULITE 2000 automatic chemiluminescent immunoassay analyzers. RESULTS The LC-MS/MS method was validated and showed limit of detection 0.05 ng/mL; limit of quantification 0.2 ng/mL; linearity of response to 32 ng/mL; total imprecision of 16.2%, 10.4%, and 8.2% for uE3 at 1.10, 4.18, and 8.32 ng/mL, respectively; and analytical recoveries of 95.9%–104.2%. ANOVA of the correlation for LC-MS/MS results vs chemiluminescent immunoassays results showed R2 = 0.9678 (Access 2 = 0.9305 LC-MS/MS + 0.2177, Sy|x = 0.1786, P < 0.0001), and R2 = 0.9663 (IMMULITE 2000 = 0.8849 LC-MS/MS − 0.0403, Sy|x = 0.1738, P < 0.0001). Bland–Altman plots of uE3 results revealed concentration-dependent immunoassay biases. Mock risk analysis for Down syndrome showed no apparent difference in the risk assessment outcomes if the adjusted method-specific multiples of the median were used, and the assay imprecision was <10% CV. CONCLUSIONS Standardization of immunoassay methods for uE3 analysis is needed to improve the accuracy of the measurements.


Sign in / Sign up

Export Citation Format

Share Document