2016 ◽  
Vol 37 (4) ◽  
pp. 422-427
Author(s):  
贾冠男 JIA Guan-nan ◽  
尧 舜 YAO Shun ◽  
高祥宇 GAO Xiang-yu ◽  
兰 天 LAN Tian ◽  
邱运涛 QIU Yun-tao ◽  
...  

2012 ◽  
Vol 4 ◽  
pp. 153-160
Author(s):  
De Huai Zeng ◽  
Yuan Liu ◽  
Li Li ◽  
De Gui Yu ◽  
Gang Xu

With the development of high power LED technology, junction temperature as a key factor constrains the performance and the service life of LED, and the main parameter of junction temperature is thermal resistance. Therefore, how to measure the thermal resistance of high power LED quickly and accurately plays an important part in improving the performance and the service life of LED. In this paper the accurate and fast measurement equipment was applied to study the thermal characteristics of high power LED. The forward-voltage based method was conducted to measure the junction temperature of high power. Then, support vector regression (SVR) combined with genetic algorithm (GA) for its parameter optimization, was proposed to establish a model to predict the thermal resistance of high power LED. The prediction performance of GA-SVR was compared with those of BPNN model. The result demonstrated that the estimated errors GA-SVR models, such as Mean Absolute Relative Error (MARE) and Root Mean Squared Errors (RMSE), all are smaller than those achieved by the BPNN applying identical samples.


2015 ◽  
Vol 62 (11) ◽  
pp. 3715-3721 ◽  
Author(s):  
Wei Lai ◽  
Xianming Liu ◽  
Weimin Chen ◽  
Xiaohua Lei ◽  
Xueying Cao

2013 ◽  
Vol 397-400 ◽  
pp. 1767-1771
Author(s):  
Cheng Yi Hsu ◽  
Yu Li Lin

A simple, fast, and reliable characterization method for measuring junction temperature (Tj) on high power GaN-based light emitting diodes (LED) was presented in this study. Thermal characteristics of high power Light-emitting-diode have been analyzed by using a three-dimensional thermal conduction model. Maximum operation temperature has also been calculated. The induced thermal behaviors of the best package processes for LED device with diamond film were investigated by finite element analysis (FEA) and by experimental measurement. The large change of forward operation voltage with temperature in light emitting diodes is advantageously used to measure junction temperature. Using this method, junction temperature (Tj) of LED under various structures and chip mounting methods was measured. It was found that the junction temperature can be reduced considerably by using diamond film substrates to replace sapphire substrate. In this study, the junction temperature can be decreased by about 14.3% under 1.5W power and decreased by about 15.9% under 1W power for 1mm square die. The thermal resistance (RT) can be measured to be 14.8°C/W under 1.5W power and 16.6°C/W under 1.W power.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1237
Author(s):  
Kuo-Bin Hong ◽  
Wei-Ta Huang ◽  
Hsin-Chan Chung ◽  
Guan-Hao Chang ◽  
Dong Yang ◽  
...  

In this paper, we demonstrate the design and fabrication of a high-power, high-speed flip-chip vertical cavity surface emitting laser (VCSEL) for light detection and ranging (LiDAR) systems. The optoelectronic characteristics and modulation speeds of vertical and flip-chip VCSELs were investigated numerically and experimentally. The thermal transport properties of the two samples were also numerically investigated. The measured maximum output power, slope efficiency (SE) and power conversion efficiency (PCE) of a fabricated flip-chip VCSEL array operated at room-temperature were 6.2 W, 1.11 W/A and 46.1%, respectively. The measured L-I-V curves demonstrated that the flip-chip architecture offers better thermal characteristics than the conventional vertical structure, especially for high-temperature operation. The rise time of the flip-chip VCSEL array was 218.5 ps, and the architecture of the flip-chip VCSEL with tunnel junction was chosen to accommodate the application of long-range LiDAR. The calculated PCE of such a flip-chip VCSEL was further improved from 51% to 57.8%. The device design concept and forecasting laser characteristics are suitable for LiDAR systems.


Author(s):  
Xiaohua Chen ◽  
Xiaoying Luo ◽  
Zhenkun Yu ◽  
Jiangyun Wang ◽  
Rong Chen ◽  
...  

2008 ◽  
Vol 16 (24) ◽  
pp. 19865 ◽  
Author(s):  
Y. Jeong ◽  
S. Baek ◽  
P. Dupriez ◽  
J.-N. Maran ◽  
J. K. Sahu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document