2020 ◽  
Vol 14 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Lynn Y. Wan

Electrospinning is a highly efficient technology for fabrication of a wide variety of polymeric nanofibers. However, the development of traditional needle-based electrospinning has been hampered by its low productivity and need of tedious work dealing with needles cleaning, installation and uninstallation. As one of the most promising needleless electrospinning means, bubble electrospinning is known for its advantages of high productivity and relatively low energy consumption due to the introduction of a third force, air flow, as a major force overcoming the surface tension. In this paper, the restrictions of conventional electrospinning and the advantages of needleless electrospinning, especially the bubble electrospinning were elaborated. Reports and patents on bubble-spun nanofibers with unique surface morphologies were also reviewed in respect of their potential applications.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 817
Author(s):  
Maria Solakidou ◽  
Yiannis Georgiou ◽  
Yiannis Deligiannakis

Noble metal-TiO2 nanohybrids, NM0-TiO2, (NM0 = Pt0, Pd0, Au0, Ag0) have been engineered by One-Nozzle Flame Spray Pyrolysis (ON-FSP) and Double-Nozzle Flame Spray Pyrolysis (DN-FSP), by controlling the method of noble metal deposition to the TiO2 matrix. A comparative screening of the two FSP methods was realized, using the NM0-TiO2 photocatalysts for H2 production from H2O/methanol. The results show that the DN-FSP process allows engineering of more efficient NM0-TiO2 nanophotocatalysts. This is attributed to the better surface-dispersion and narrower size-distribution of the noble metal onto the TiO2 matrix. In addition, DN-FSP process promoted the formation of intraband states in NM0-TiO2, lowering the band-gap of the nanophotocatalysts. Thus, the present study demonstrates that DN-FSP process is a highly efficient technology for fine engineering of photocatalysts, which adds up to the inherent scalability of Flame Spray Pyrolysis towards industrial-scale production of nanophotocatalysts.


2019 ◽  
Vol 219 (3) ◽  
pp. 2056-2072
Author(s):  
A Carrier ◽  
F Fischanger ◽  
J Gance ◽  
G Cocchiararo ◽  
G Morelli ◽  
...  

SUMMARY The growth of the geothermal industry sector requires innovative methods to reduce exploration costs whilst minimizing uncertainty during subsurface exploration. Until now geoelectrical prospection had to trade between logistically complex cabled technologies reaching a few hundreds meters deep versus shallow-reaching prospecting methods commonly used in hydro-geophysical studies. We present a recent technology for geoelectrical prospection, and show how geoelectrical methods may allow the investigation of medium-enthalpy geothermal resources until about 1 km depth. The use of the new acquisition system, which is made of a distributed set of independent electrical potential recorders, enabled us to tackle logistics and noise data issues typical of urbanized areas. We acquired a 4.5-km-long 2-D geoelectrical survey in an industrial area to investigate the subsurface structure of a sedimentary sequence that was the target of a ∼700 m geothermal exploration well (Geo-01, Satigny) in the Greater Geneva Basin, Western Switzerland. To show the reliability of this new method we compared the acquired resistivity data against reflection seismic and gravimetric data and well logs. The processed resistivity model is consistent with the interpretation of the active-seismic data and density variations computed from the inversion of the residual Bouguer anomaly. The combination of the resistivity and gravity models suggest the presence of a low resistivity and low density body crossing Mesozoic geological units up to Palaeogene–Neogene units that can be used for medium-enthalpy geothermal exploitation. Our work points out how new geoelectrical methods may be used to identify thermal groundwater at depth. This new cost-efficient technology may become an effective and reliable exploration method for the imaging of shallow geothermal resources.


2020 ◽  
Vol 14 (1) ◽  
pp. 108-125 ◽  
Author(s):  
Salman Haider ◽  
Javed Ahmad Bhat

Purpose Because of growing energy consumption and increasing absolute CO2 emissions, the recent calibrations about the environmental sustainability across the globe have mandated to achieve the minimal energy consumption through employing energy-efficient technology. This study aims to estimate linkage between simple measure of energy efficiency indicator that is reciprocal of energy intensity and total factor productivity (TFP) in case of Indian paper industry for 21 major states. In addition, the study incorporates the other control variables like labour productivity, capital utilization and structure of paper industry to scrutinize their likely impact on energy efficiency performance of the industry. Design/methodology/approach To derive the plausible estimates of TFP, the study applies the much celebrated Levinsohn and Petrin (2003) methodology. Using the regional level data for the period 2001-2013, the study employs instrumental variable-generalized method of moments (GMM-IV) technique to examine the nature of relationship among the variables involved in the analysis. Findings An elementary examination of energy intensity shows that not all states are equally energy intensive. States like Goa, Rajasthan, Jharkhand and Tamil Nadu are less energy intensive, whereas Uttar Pradesh, Kerala, Chhattisgarh, Assam and Punjab are most energy-intensive states on the basis of their state averages over the whole study period. The results estimated through GMM-IV show that increasing level of TFP is associated with lower level of energy per unit of output. Along this better skills and capacity utilization are also found to have positive impact on energy efficiency performance of industry. However, the potential heterogeneity within the structure of industry itself is found responsible for its higher energy intensity. Practical implications States should ensure and undertake substantial investment projects in the research and development of energy-efficient technology and that targeted allocations could be reinforced for more fruitful results. Factors aiming at improving the labour productivity should be given extra emphasis together with capital deepening and widening, needed for energy conservation and environmental sustainability. Given the dependence of structure of paper industry on the multitude of factors like regional inequality, economic growth, industrial structure and the resource endowment together with the issues of fragmented sizes, poor infrastructure and availability and affordability of raw materials etc., states should actively promote the coordination and cooperation among themselves to reap the benefits of technological advancements through technological spill overs. In addition, owing to their respective state autonomies, state governments should set their own energy saving targets by taking into account the respective potentials and opportunities for the different industries. Despite the requirement of energy-efficient innovations, however, the cons of technological advancements and the legal frameworks on the employment structure and distributional status should be taken care of before their adoption and execution. Originality/value To the best of our knowledge, this is the first study that empirically examines the linkage between energy efficiency and TFP in case of Indian paper industry. The application of improved methods like Levinsohn and Petrin (2003) to derive the TFP measure and the use of GMM-IV to account for potential econometric problems like that of endogeneity will again add to the novelty of study.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Sign in / Sign up

Export Citation Format

Share Document