Integrating Quantitative Skills in Introductory Ecology: Investigations of Wild Bird Feeding Preferences

2013 ◽  
Vol 75 (4) ◽  
pp. 269-273 ◽  
Author(s):  
Christine J. Small ◽  
Kiersten N. Newtoff

Undergraduate biology education is undergoing dramatic changes, emphasizing student training in the “tools and practices” of science, particularly quantitative and problem-solving skills. We redesigned a freshman ecology lab to emphasize the importance of scientific inquiry and quantitative reasoning in biology. This multi-week investigation uses observations of avian form and function and an extensive student-generated data set to introduce hypothesis testing, experimental design, and biological statistics. Research groups compare feeding preferences (location and seed selection) between selected species of wild birds, evaluating their findings quantitatively through descriptive statistics, graphing, and data analysis, and ecologically through comparisons of species biology and natural history.

2017 ◽  
Vol 44 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Carol Ann Courneya

There are limited curricular options for medical students to engage in art-making during their training. Yet, it is known that art-making confers a variety of benefits related to learning. This qualitative study utilises a visual methodology to explore students’ art-making in the context of the cardiovascular sciences. The existence of a multiyear repository of medical/dental student generated, cardiac-inspired art, collected over 6 years, provided the opportunity to explore the nature of the art made. The aim was to categorise the art produced, as well as the depth and breadth of understanding required to produce the art. The data set included a wide variety of titled art (paintings, photographs, sketches, sculptures, collages, poetry and music/dance). Systematic curation of the collection, across all media, yielded three main categories: anatomical renderings, physiology/pathophysiology renderings and kinesthetic creations (music/dance/tactile). Overall (medical and dental) student-generated art suggested a high level of content/process understanding, as illustrated by attention to scientific detail, integration of form and function as well as the sophisticated use of visual metaphor and word play. Dental students preferentially expressed their understanding of anatomy and physiology kinesthetically, creating art that required manual dexterity as well as through choreography and dance. Combining art-making with basic science curricular learning invited the medical and dentistry students to link their understanding to different modes of expression and a non-biomedical way of knowing. Subsequent incorporation of the student-generated cardiac art into lectures exposed the entire class to creative pictorial expressions of anatomy, physiology and pathophysiology.


2014 ◽  
Vol 13 (2) ◽  
pp. 200-211 ◽  
Author(s):  
Sara E. Brownell ◽  
Scott Freeman ◽  
Mary Pat Wenderoth ◽  
Alison J. Crowe

Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education.


2020 ◽  
Vol 101 (2) ◽  
pp. 604-612
Author(s):  
Luis D Verde Arregoitia ◽  
Pablo Teta ◽  
Guillermo D’Elía

Abstract The combination of morphometrics, phylogenetic comparative methods, and open data sets has renewed interest in relating morphology to adaptation and ecological opportunities. Focusing on the Caviomorpha, a well-studied mammalian group, we evaluated patterns in research and data sharing in studies relating form and function. Caviomorpha encompasses a radiation of rodents that is diverse both taxonomically and ecologically. We reviewed 41 publications investigating ecomorphology in this group. We recorded the type of data used in each study and whether these data were made available, and we re-digitized all provided data. We tracked two major lines of information: collections material examined and trait data for morphological and ecological traits. Collectively, the studies considered 63% of extant caviomorph species; all extant families and genera were represented. We found that species-level trait data rarely were provided. Specimen-level data were even less common. Morphological and ecological data were too heterogeneous and sparse to aggregate into a single data set, so we created relational tables with the data. Additionally, we concatenated all specimen lists into a single data set and standardized all relevant data for phylogenetic hypotheses and gene sequence accessions to facilitate future morphometric and phylogenetic comparative research. This work highlights the importance and ongoing use of scientific collections, and it allows for the integration of specimen information with species trait data. Recientemente ha resurgido el interés por estudiar la relación entre morfología, ecología, y adaptación. Esto se debe al desarrollo de nuevas herramientas morfométricas y filogenéticas, y al acceso a grandes bases de datos para estudios comparados. Revisamos 41 publicaciones sobre ecomorfología de roedores caviomorfos, un grupo diverso y bien estudiado, para evaluar los patrones de investigación y la transparencia para la liberación de datos. Registramos los tipos de datos que se utilizaron para cada estudio y si los datos están disponibles. Cuando estos datos se compartieron, los redigitalizamos. Nos enfocamos en los ejemplares consultados, y en datos que describen rasgos ecológicos y morfológicos para las especies estudiadas. Los estudios que revisamos abarcan el 63% de las especies de caviomorfos que actualmente existen. Encontramos que raramente fueron compartidos los datos que se tomaron para especies, y menos aún para ejemplares. Los datos morfológicos y ecológicos eran demasiado heterogéneos e exiguos para consolidar en un solo banco de datos; debido a esta circunstancia, creamos tablas relacionales con los datos. Además, enlazamos todas las listas individuales de especímenes para crear un solo banco de datos y estandarizamos todos los datos pertinentes a hipótesis filogenéticas, así como los números de acceso de secuencias genéticas, para así facilitar eventuales estudios comparados de morfometría y filogenia. Este trabajo resalta la importancia de las colecciones científicas y documenta su uso, además permitiendo la futura integración de datos derivados de ejemplares con datos sobre rasgos ecomorfológicos a nivel de especie.


2010 ◽  
Vol 9 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Pat Marsteller ◽  
Lisette de Pillis ◽  
Ann Findley ◽  
Karl Joplin ◽  
John Pelesko ◽  
...  

In response to the call of BIO2010 for integrating quantitative skills into undergraduate biology education, 30 Howard Hughes Medical Institute (HHMI) Program Directors at the 2006 HHMI Program Directors Meeting established a consortium to investigate, implement, develop, and disseminate best practices resulting from the integration of math and biology. With the assistance of an HHMI-funded mini-grant, led by Karl Joplin of East Tennessee State University, and support in institutional HHMI grants at Emory and University of Delaware, these institutions held a series of summer institutes and workshops to document progress toward and address the challenges of implementing a more quantitative approach to undergraduate biology education. This report summarizes the results of the four summer institutes (2007–2010). The group developed four draft white papers, a wiki site, and a listserv. One major outcome of these meetings is this issue of CBE—Life Sciences Education, which resulted from proposals at our 2008 meeting and a January 2009 planning session. Many of the papers in this issue emerged from or were influenced by these meetings.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


2011 ◽  
Author(s):  
Scott Fluke ◽  
Russell J. Webster ◽  
Donald A. Saucier

Sign in / Sign up

Export Citation Format

Share Document