scholarly journals The Arabidopsis Cdk1/Cdk2 homolog CDKA ;1 controls chromosome axis assembly during plant meiosis

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Chao Yang ◽  
Kostika Sofroni ◽  
Erik Wijnker ◽  
Yuki Hamamura ◽  
Lena Carstens ◽  
...  
2021 ◽  
Vol 7 (11) ◽  
pp. eabe7920
Author(s):  
Meihui Song ◽  
Binyuan Zhai ◽  
Xiao Yang ◽  
Taicong Tan ◽  
Ying Wang ◽  
...  

Meiotic chromosomes have a loop/axis architecture, with axis length determining crossover frequency. Meiosis-specific Pds5 depletion mutants have shorter chromosome axes and lower homologous chromosome pairing and recombination frequency. However, it is poorly understood how Pds5 coordinately regulates these processes. In this study, we show that only ~20% of wild-type level of Pds5 is required for homolog pairing and that higher levels of Pds5 dosage-dependently regulate axis length and crossover frequency. Moderate changes in Pds5 protein levels do not explicitly impair the basic recombination process. Further investigations show that Pds5 does not regulate chromosome axes by altering Rec8 abundance. Conversely, Rec8 regulates chromosome axis length by modulating Pds5. These findings highlight the important role of Pds5 in regulating meiosis and its relationship with Rec8 to regulate chromosome axis length and crossover frequency with implications for evolutionary adaptation.


2019 ◽  
Vol 116 (37) ◽  
pp. 18423-18428 ◽  
Author(s):  
Huizhong Xu ◽  
Zhisong Tong ◽  
Qing Ye ◽  
Tengqian Sun ◽  
Zhenmin Hong ◽  
...  

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure’s lateral elements (LEs). While the components of the mammalian chromosome axis/LE—including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2—are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


Chromosoma ◽  
2021 ◽  
Author(s):  
Da-Qiao Ding ◽  
Atsushi Matsuda ◽  
Kasumi Okamasa ◽  
Yasushi Hiraoka

AbstractThe structure of chromosomes dramatically changes upon entering meiosis to ensure the successful progression of meiosis-specific events. During this process, a multilayer proteinaceous structure called a synaptonemal complex (SC) is formed in many eukaryotes. However, in the fission yeast Schizosaccharomyces pombe, linear elements (LinEs), which are structures related to axial elements of the SC, form on the meiotic cohesin-based chromosome axis. The structure of LinEs has been observed using silver-stained electron micrographs or in immunofluorescence-stained spread nuclei. However, the fine structure of LinEs and their dynamics in intact living cells remain to be elucidated. In this study, we performed live cell imaging with wide-field fluorescence microscopy as well as 3D structured illumination microscopy (3D-SIM) of the core components of LinEs (Rec10, Rec25, Rec27, Mug20) and a linE-binding protein Hop1. We found that LinEs form along the chromosome axis and elongate during meiotic prophase. 3D-SIM microscopy revealed that Rec10 localized to meiotic chromosomes in the absence of other LinE proteins, but shaped into LinEs only in the presence of all three other components, the Rec25, Rec27, and Mug20. Elongation of LinEs was impaired in double-strand break-defective rec12− cells. The structure of LinEs persisted after treatment with 1,6-hexanediol and showed slow fluorescence recovery from photobleaching. These results indicate that LinEs are stable structures resembling axial elements of the SC.


2007 ◽  
Vol 31 (6) ◽  
pp. 626-635 ◽  
Author(s):  
N SHAMINA ◽  
E GORDEEVA ◽  
N KOVALEVA ◽  
E SERIUKOVA ◽  
N DOROGOVA

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Alan MV West ◽  
Scott C Rosenberg ◽  
Sarah N Ur ◽  
Madison K Lehmer ◽  
Qiaozhen Ye ◽  
...  

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that ‘axis core proteins’ from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify ‘closure motifs’ in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.


2018 ◽  
Author(s):  
Andrew Lloyd ◽  
Eric Jenczewski

ABSTRACTInterference is a major force governing the patterning of meiotic crossovers. A leading model describing how interference influences crossover-patterning is the beam film model, a mechanical model based on the accumulation and redistribution of crossover-promoting stress along the chromosome axis. We use the beam-film model in conjunction with a large Arabidopsis reciprocal back-cross data set to gain mechanistic insights into the differences between male and female meiosis and crossover patterning. Beam-film modelling suggests that the underlying mechanics of crossover patterning and interference are identical in the two sexes, with the large difference in recombination rates and distributions able to be entirely explained by the shorter chromosome axes in females. The modelling supports previous indications that fewer crossovers occur via the class II pathway in female meiosis and that this could be explained by reduced DNA double strand breaks in female meiosis, paralleling the observed reduction in synaptonemal complex length between the two sexes. We also demonstrate that changes in the strength of suppression of neighboring class I crossovers can have opposite effects on effective interference depending on the distance between two genetic intervals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sergey Mursalimov ◽  
Nobuhiko Ohno ◽  
Mami Matsumoto ◽  
Sergey Bayborodin ◽  
Elena Deineko

Serial block-face scanning electron microscopy (SBF-SEM) was used here to study tobacco male meiosis. Three-dimensional ultrastructural analyses revealed that intercellular nuclear migration (INM) occurs in 90–100% of tobacco meiocytes. At the very beginning of meiosis, every meiocyte connected with neighboring cells by more than 100 channels was capable of INM. At leptotene and zygotene, the nucleus in most tobacco meiocytes approached the cell wall and formed nuclear protuberances (NPs) that crossed the cell wall through the channels and extended into the cytoplasm of a neighboring cell. The separation of NPs from the migrating nuclei and micronuclei formation were not observed. In some cases, the NPs and nuclei of neighboring cells appeared apposed to each other, and the gap between their nuclear membranes became invisible. At pachytene, NPs retracted into their own cells. After that, the INM stopped. We consider INM a normal part of tobacco meiosis, but the reason for such behavior of nuclei is unclear. The results obtained by SBF-SEM suggest that there are still many unexplored features of plant meiosis hidden by limitations of common types of microscopy and that SBF-SEM can turn over a new leaf in plant meiosis research.


2020 ◽  
Vol 117 (24) ◽  
pp. 13647-13658 ◽  
Author(s):  
Christophe Lambing ◽  
Pallas C. Kuo ◽  
Andrew J. Tock ◽  
Stephanie D. Topp ◽  
Ian R. Henderson

During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8–cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8–cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly,asy1/+heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases inasy1/+occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal inasy1/+, it is undetectable inasy1mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.


2017 ◽  
Vol 8 ◽  
Author(s):  
Isabelle Colas ◽  
Benoit Darrier ◽  
Mikel Arrieta ◽  
Sybille U. Mittmann ◽  
Luke Ramsay ◽  
...  

1971 ◽  
Vol 13 (3) ◽  
pp. 437-442 ◽  
Author(s):  
K. Lesins

Colchicine treatment of hybrids from the interspecific cross Medicago pironae Vis. × M. daghestanica Rupr. induced the formation of three tetraploid shoots, one with 2n = 29 and two with 2n = 32, in their somatic nuclei. Their flowers had 21, 44 and 62% plasma-filled pollen, respectively. No seed was obtained from these tetraploids after selfing and intercrossing more than 1,200 flowers, indicating the presence of a built-in fertility barrier between the two species.By applying pollen from the tetraploid hybrids to alfalfa (M. sativn L.) two trispecies hybrids with 2n = 34 and 30 chromosomcs were produced. The first had 32%, the second 22% plasma-filled pollen grains. On backcrossing to M. sativa, a higher seed set was obtained with pollen from the 2n = 34 plant than from the 2n = 30 plant. Meiosis in the 2n = 30 plant was abnormal. At MI multivalents were observed, indicating that chromosomal material may be interchanged between M. pironae-daghestanica and M. sativa. Approximately half the meiocytes at AI possessed lagging chromosomes and only 6% of secondary meiocytes at AII were without disturbances.


Sign in / Sign up

Export Citation Format

Share Document