scholarly journals Interplay between Pds5 and Rec8 in regulating chromosome axis length and crossover frequency

2021 ◽  
Vol 7 (11) ◽  
pp. eabe7920
Author(s):  
Meihui Song ◽  
Binyuan Zhai ◽  
Xiao Yang ◽  
Taicong Tan ◽  
Ying Wang ◽  
...  

Meiotic chromosomes have a loop/axis architecture, with axis length determining crossover frequency. Meiosis-specific Pds5 depletion mutants have shorter chromosome axes and lower homologous chromosome pairing and recombination frequency. However, it is poorly understood how Pds5 coordinately regulates these processes. In this study, we show that only ~20% of wild-type level of Pds5 is required for homolog pairing and that higher levels of Pds5 dosage-dependently regulate axis length and crossover frequency. Moderate changes in Pds5 protein levels do not explicitly impair the basic recombination process. Further investigations show that Pds5 does not regulate chromosome axes by altering Rec8 abundance. Conversely, Rec8 regulates chromosome axis length by modulating Pds5. These findings highlight the important role of Pds5 in regulating meiosis and its relationship with Rec8 to regulate chromosome axis length and crossover frequency with implications for evolutionary adaptation.

2020 ◽  
Vol 117 (24) ◽  
pp. 13647-13658 ◽  
Author(s):  
Christophe Lambing ◽  
Pallas C. Kuo ◽  
Andrew J. Tock ◽  
Stephanie D. Topp ◽  
Ian R. Henderson

During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8–cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8–cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly,asy1/+heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases inasy1/+occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal inasy1/+, it is undetectable inasy1mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Mayuri Tanaka-Yano ◽  
Dahai Wang ◽  
Eleanor Meader ◽  
Melissa A. Kinney ◽  
Vivian Morris ◽  
...  

Abstract Polycomb group (PcG) proteins are a well-studied group of chromatin modifiers belonging to one of two distinct multi-protein complexes: Polycomb repressive complex 1 (PRC1) and PRC2. With definitive hematopoiesis, PRCs contribute to many aspects of fetal and adult blood formation. However, it is largely unknown how many of the age-specific effects of PRCs in hematopoiesis are regulated. Here, we show that the definitive hematopoietic stem and progenitor cell (HSPC) compartment is remodeled from the fetus to the neonate and into young adulthood coordinated with changes in mature blood cell output. This process is in part dependent on the PRC1 component Cbx2, which is regulated by the heterochronic Lin28b/let-7 axis. First, we quantified various population of definitive hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) using midgestation fetal liver (FL, embryonic day 14.5 (E14.5)), newborn bone marrow (BM, postnatal day 0-1), or young adult (postnatal age 6 to 8 weeks) BM. The lymphoid biased multipotent progenitor 4 (MPP4, ~0.9-fold) declined as the mice matured and aged. We also found erythroid-biased MPP2 diminished (~0.7-fold) while myeloid-biased MPP3 increased (~1.7-fold) with maturation. Using isolated long-term (LT) HSCs from these three stages, we found that E14.5 FL (~8.0-fold) and neonatal LT-HSC (~4.0-fold) showed more rapid B-cell reconstitution compared to young adult LT-HSCs upon transplantation. We found that many of these effects were regulated by Lin28b/let-7. Next, we aimed to determine the downstream mediators of Lin28/let-7's effect on HSPCs maturation. By interrogating gene regulatory subnetworks differentially active across mouse HSPC maturation and mining these subnetworks for predicted let-7 target transcripts, we found Cbx2 enriched in E14.5 FL (P=0.003) and adult HSPCs ectopically expressing LIN28B relative to wild-type adult HSPCs. In cell-based assays, we confirmed that let-7 microRNAs directly regulated CBX2 protein levels. Thus, the Lin28b/let-7 axis governs CBX2 protein levels, leading us to hypothesize that this axis exerts its wide-ranging effects on hematopoietic maturation by regulating PRC1 by controlling Cbx2 levels. As CBX2's developmental stage-specific functions have not been investigated, we generated Cbx2-/-embryos and investigated definitive FL hematopoiesis. We observed skewing of myeloerythorid progenitors to an adult-like myeloid-predominant distribution in Cbx2-/- embryos (P=0.0002), and B-cells in Cbx2-/- neonatal spleens were diminished (P=0.04). We further examined this effect using transplanted Cbx2-/- MPP4 from E14.5 FL which resulted in a decreased donor derived B-lymphoid output compared to wild-type littermates (~0.7-fold). To understand the functional role of Cbx2/PRC1 in juvenile hematopoiesis, we next investigated the role of Cbx2 in maintaining histone H2A monoubiquitinylation (H2AK119Ub) - the histone modification placed by PRC1 - in FL HSPCs. In Cbx2-/- FL HSPCs, the global distribution of H2AK119Ub localization did not change, but several specific H2AK119Ub peaks were altered. We observed differential H2AK119Ub abundance associated with a candidate enhancer within the Erg gene, suggestive of control of Erg expression by Lin28b/let-7/Cbx2. We confirmed that this enhancer activated transcription from a minimal promoter (~8-fold). Erg expression was increased in perinatal spleens of Cbx2-/- mice compared to Cbx2+/+ littermates (~4-fold). Moreover, we found that Cbx2 could repress ERG expression as well as other master HSPC transcription factors. Overall, our findings show that the Lin28b/let-7-axis controls developmental stage-specific hematopoietic output through PRC1-mediated chromatin remodeling. These findings demonstrate a key mechanism by which HSPCs alter their properties during developmental maturation with relevance to age-skewed blood disorders. Disclosures No relevant conflicts of interest to declare.


Genetics ◽  
1985 ◽  
Vol 110 (4) ◽  
pp. 557-568
Author(s):  
Michel Sicard ◽  
Jean-Claude Lefevre ◽  
Pezechpour Mostachfi ◽  
Anne-Marie Gasc ◽  
Claudine Sarda

ABSTRACT In pneumococcal transformation the frequency of recombinants between point mutations is generally proportional to distance. We have recently described an aberrant marker in the amiA locus that appeared to enhance recombination frequency when crossed with any other allele of this gene. The hyperrecombination that we have observed in two-point crosses could be explained by two hypotheses: the aberrant marker induces frequent crossovers in its vicinity or the mutant is converted to wild type. In this report we present evidence showing that, in suitable three-point crosses, this hyperrecombination does not modify the recombination frequency between outside markers, suggesting that a conversion occurs at the site of this mutation. To estimate the length over which this event occurs, we isolated very closely linked markers and used them in two-point crosses. It appears that the conversion system removes only a few base pairs (from three to 27) around the aberrant marker. This conversion process is quite different from the mismatch-repair system controlled by hex genes in pneumococcus, which involves several thousand base pairs. Moreover, we have constructed artificial heteroduplexes using separated DNA strands. It appears that only one of the two heteroduplexes is specifically converted. The conversion system acts upon 5′..ATTAAT..3′/3′..TAAGTA..5′. A possible role of the palindrome resulting from the mutation is discussed.


2019 ◽  
Author(s):  
Ewan K.S. McRae ◽  
Steven J. Dupas ◽  
Evan P. Booy ◽  
Ramanaguru S. Piragasam ◽  
Richard P. Fahlman ◽  
...  

AbstractDDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we identified 26 proteins that are expressed at significantly different levels in cells expressing wild type DDX21 relative to an rG4 binding deficient DDX21 (M4). From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5’UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing only DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in cells expressing only DDX21 M4, and rendering previously resistant cells sensitive to TRAIL mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by a rG4 forming potential in their 5’UTRs.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Sri Nagarjun Batchu ◽  
Angie Hughson ◽  
Janice Gerloff ◽  
Deborah J Fowell ◽  
Vyacheslav A Korshunov

Introduction: Gas6/Axl pathway contributes to elevation of blood pressure. Immune cells are implicated in initiation and maintenance of hypertension. In this study we aimed to investigate the role of Axl in immune cells on kidney injury and initiation of hypertension. Methods and Results: Deoxycorticosterone-acetate (DOCA; 75mg, 60days release) and salt hypertension was induced for 1wk or 6wks in four groups of Axl chimeras (n=4-5) that were generated by bone marrow (BM) transplant. Multi parameter flow cytometry was used to quantify five major immune cell subsets in digested kidneys from Axl chimeras. Systolic blood pressure (SBP) increased by 30mmHg in Axl+/+ →Axl+/+, Axl-/- →Axl-/- and Axl+/+ →Axl-/- mice after 1wk of DOCA-salt. However, chimeras that lack Axl in the BM cells (Axl-/- →Axl+/+) showed reduction in early increase in SBP (16+2mmHg). We observed a significant decrease in urine protein levels in Axl-/- →Axl+/+ (0.3+0.1μg/μl) compared to other Axl chimeras (∼0.7μg/μl) after 1wk of DOCA-salt. Kidney glomeruli areas were reduced in Axl-/- →Axl+/+ (4,143+229μm 2 ) compared to other Axl chimeras (∼6,000μm 2 ) after 6wks of DOCA-salt. Kidneys from Axl-/- →Axl-/- showed an increase in total leukocytes (8 vs. 4%), B cells (29 vs. 12%) and decrease in monocytes/macrophages (16 vs. 22%) and dendritic cells (5 vs. 10%) compared to Axl+/+ →Axl+/+. Moreover, Axl-/- →Axl+/+ showed further increase in leukocytes (17%), B (39%) and dendritic (13%) cells in kidneys compared to other Axl chimeras. In addition a small percentage of wild type T cells was increased in the kidneys from Axl-/- →Axl+/+ chimeras. Conclusions: These findings suggest that Axl expression in BM-derived cells is critical for kidney injury in DOCA-salt hypertension. Axl-dependent pathways regulate immune cell populations in the kidneys during initiation of hypertension. This study was supported by HL105623 grant (VAK)


Genetics ◽  
2021 ◽  
Author(s):  
Krishnaprasad G Nandanan ◽  
Sagar Salim ◽  
Ajith V Pankajam ◽  
Miki Shinohara ◽  
Gen Lin ◽  
...  

Abstract In the baker’s yeast Saccharomyces cerevisiae, most of the meiotic crossovers are generated through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex. To understand the role of Msh4-Msh5 in meiotic crossing over, we determined its genome wide in vivo binding sites in meiotic cells. We show that Msh5 specifically associates with DSB hotspots, chromosome axes, and centromeres on chromosomes. A basal level of Msh5 association with these chromosomal features is observed even in the absence of DSB formation (spo11Δ mutant) at the early stages of meiosis. But efficient binding to DSB hotspots and chromosome axes requires DSB formation and resection and is enhanced by double Holliday junction structures. Msh5 binding is also correlated to DSB frequency and enhanced on small chromosomes with higher DSB and crossover density. The axis protein Red1 is required for Msh5 association with the chromosome axes and DSB hotspots but not centromeres. Although binding sites of Msh5 and other pro-crossover factors like Zip3 show extensive overlap, Msh5 associates with centromeres independent of Zip3. These results on Msh5 localization in wild type and meiotic mutants have implications for how Msh4-Msh5 works with other pro-crossover factors to ensure crossover formation.


2005 ◽  
Vol 289 (1) ◽  
pp. H181-H187 ◽  
Author(s):  
Jong Woong Park ◽  
Wen-Ning Qi ◽  
Yongting Cai ◽  
Igor Zelko ◽  
John Q. Liu ◽  
...  

This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD−/−) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD−/− mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD−/− mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD−/− mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD−/− mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species.


Brain ◽  
2020 ◽  
Vol 143 (7) ◽  
pp. 2255-2271 ◽  
Author(s):  
Tuancheng Feng ◽  
Rory R Sheng ◽  
Santiago Solé-Domènech ◽  
Mohammed Ullah ◽  
Xiaolai Zhou ◽  
...  

Abstract TMEM106B encodes a lysosomal membrane protein and was initially identified as a risk factor for frontotemporal lobar degeneration. Recently, a dominant D252N mutation in TMEM106B was shown to cause hypomyelinating leukodystrophy. However, how TMEM106B regulates myelination is still unclear. Here we show that TMEM106B is expressed and localized to the lysosome compartment in oligodendrocytes. TMEM106B deficiency in mice results in myelination defects with a significant reduction of protein levels of proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), the membrane proteins found in the myelin sheath. The levels of many lysosome proteins are significantly decreased in the TMEM106B-deficient Oli-neu oligodendroglial precursor cell line. TMEM106B physically interacts with the lysosomal protease cathepsin D and is required to maintain proper cathepsin D levels in oligodendrocytes. Furthermore, we found that TMEM106B deficiency results in lysosome clustering in the perinuclear region and a decrease in lysosome exocytosis and cell surface PLP levels. Moreover, we found that the D252N mutation abolished lysosome enlargement and lysosome acidification induced by wild-type TMEM106B overexpression. Instead, it stimulates lysosome clustering near the nucleus as seen in TMEM106B-deficient cells. Our results support that TMEM106B regulates myelination through modulation of lysosome function in oligodendrocytes.


2020 ◽  
Vol 95 (2) ◽  
pp. e01201-20
Author(s):  
Stacey Human ◽  
Anne L. Hotard ◽  
Christina A. Rostad ◽  
Sujin Lee ◽  
Louise McCormick ◽  
...  

ABSTRACTThis study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.


Author(s):  
Soogil Hong ◽  
Jeong H Joo ◽  
Hyeseon Yun ◽  
Nancy Kleckner ◽  
Keun P Kim

Abstract We have explored the meiotic roles of cohesin modulators Pds5 and Rad61/Wapl, in relation to one another, and to meiotic kleisin Rec8, for homolog pairing, all physically definable steps of recombination, prophase axis length and S-phase progression, in budding yeast. We show that Pds5 promotes early steps of recombination and thus homolog pairing, and also modulates axis length, with both effects independent of a sister chromatid. [Pds5+Rec8] promotes double-strand break formation, maintains homolog bias for crossover formation and promotes S-phase progression. Oppositely, the unique role of Rad61/Wapl is to promote non-crossover recombination by releasing [Pds5+Rec8]. For this effect, Rad61/Wapl probably acts to maintain homolog bias by preventing channeling into sister interactions. Mysteriously, each analyzed molecule has one role that involves neither of the other two. Overall, the presented findings suggest that Pds5’s role in maintenance of sister chromatid cohesion during the mitotic prophase-analogous stage of G2/M is repurposed during meiosis prophase to promote interactions between homologs.


Sign in / Sign up

Export Citation Format

Share Document