scholarly journals Performance Evaluation and Local International Sensitivity Index Verification Using Automated Coagulation Analyzer Coapresta 2000

2018 ◽  
Vol 40 (1) ◽  
pp. 38-45
Author(s):  
Ji Yeon Ham ◽  
Jang Soo Suh
1991 ◽  
Vol 65 (03) ◽  
pp. 263-267 ◽  
Author(s):  
A M H P van den Besselaar ◽  
R M Bertina

SummaryIn a collaborative trial of eleven laboratories which was performed mainly within the framework of the European Community Bureau of Reference (BCR), a second reference material for thromboplastin, rabbit, plain, was calibrated against its predecessor RBT/79. This second reference material (coded CRM 149R) has a mean International Sensitivity Index (ISI) of 1.343 with a standard error of the mean of 0.035. The standard error of the ISI was determined by combination of the standard errors of the ISI of RBT/79 and the slope of the calibration line in this trial.The BCR reference material for thromboplastin, human, plain (coded BCT/099) was also included in this trial for assessment of the long-term stability of the relationship with RBT/79. The results indicated that this relationship has not changed over a period of 8 years. The interlaboratory variation of the slope of the relationship between CRM 149R and RBT/79 was significantly lower than the variation of the slope of the relationship between BCT/099 and RBT/79. In addition to the manual technique, a semi-automatic coagulometer according to Schnitger & Gross was used to determine prothrombin times with CRM 149R. The mean ISI of CRM 149R was not affected by replacement of the manual technique by this particular coagulometer.Two lyophilized plasmas were included in this trial. The mean slope of relationship between RBT/79 and CRM 149R based on the two lyophilized plasmas was the same as the corresponding slope based on fresh plasmas. Tlowever, the mean slope of relationship between RBT/79 and BCT/099 based on the two lyophilized plasmas was 4.9% higher than the mean slope based on fresh plasmas. Thus, the use of these lyophilized plasmas induced a small but significant bias in the slope of relationship between these thromboplastins of different species.


1994 ◽  
Vol 72 (01) ◽  
pp. 084-088 ◽  
Author(s):  
E M Duncan ◽  
C R Casey ◽  
B M Duncan ◽  
J V Lloyd

SummaryThe aim of this study was to determine whether the concentration of trisodium citrate used to anticoagulate blood has an effect on the INR of the sample and the ISI of the thromboplastin. Five thromboplastins including and Australian reference material were used to measure the prothrombin time of normal and patient samples collected into two concentrations of trisodium citrate - 109 mM and 129 mM. There was no effect of citrate concentration on the INRs determined with the reference material. However for the other four thromboplastins there was a significant difference between INRs for the two citrate groups. The prothrombin times of the samples collected into 129 mM were longer than those collected into 109 mM. This difference was only slight in normal plasma but more marked in patients receiving oral anticoagulants, causing the INRs for patient plasmas collected into 129 mM citrate to be higher then the corresponding samples collected into 109 mM citrate.From orthogonal regression of log prothrombin times by the reference method against each thromboplastin, we found that the ISI for each thromboplastin was approximately 10% lower when determined with samples collected into 129 mM citrate than with samples collected into 109 mM. These results suggest that the concentration of trisodium citrate used for collection of blood samples can affect the calculation of the INR and the calibration of the ISI of thromboplastin. This was found both for commercial thromboplastins prepared by tissue extraction and for a recombinant tissue factor.


1993 ◽  
Vol 69 (01) ◽  
pp. 035-040 ◽  
Author(s):  
A M H P van den Besselaar ◽  
R M Bertina

SummaryFour thromboplastin reagents were tested by 18 laboratories in Europe, North-America, and Australasia, according to a detailed protocol. One thromboplastin was the International Reference Preparation for ox brain thromboplastin combined with adsorbed bovine plasma (coded OBT/79), and the second was a certified reference material for rabbit brain thromboplastin, plain (coded CRM 149R). The other two thromboplastin reagents were another rabbit plain brain thromboplastin (RP) with a lower ISI than CRM 149R and a rabbit brain thromboplastin combined with adsorbed bovine plasma (RC). Calibration of the latter two reagents was performed according to methods recommended by the World Health Organization (W. H. O.).The purpose of this study was to answer the following questions: 1) Is the calibration of the RC reagent more precise against the bovine/combined (OBT/79) than against the rabbit/plain reagent (CRM 149R)? 2) Is the precision of calibration influenced by the magnitude of the International Sensitivity Index (ISI)?The lowest inter-laboratory variation of ISI was observed in the calibration of the rabbit/plain reagent (RP) against the other rabbit/plain reagent (CRM 149R) (CV 1.6%). The highest interlaboratory variation was obtained in the calibration of rabbit/plain (RP) against bovine/combined (OBT/79) (CV 5.1%). In the calibration of the rabbit/combined (RC) reagent, there was no difference in precision between OBT/79 (CV 4.3%) and CRM 149R (CV 4.2%). Furthermore, there was no significant difference in the precision of the ISI of RC obtained with CRM 149R (ISI = 1.343) and the rabbit/plain (RP) reagent with ISI = 1.14. In conclusion, the calibration of RC could be performed with similar precision with either OBT/79 or CRM 149R, or RP.The mean ISI values calculated with OBT/79 and CRM 149R were practically identical, indicating that there is no bias in the ISI of these reference preparations and that these reference preparations have been stable since their original calibration studies in 1979 and 1987, respectively.International Normalized Ratio (INR) equivalents were calculated for a lyophilized control plasma derived from patients treated with oral anticoagulants. There were small but significant differences in the mean INR equivalents between the bovine and rabbit thromboplastins. There were no differences in the interlaboratory variation of the INR equivalents, when the four thromboplastins were compared.


1985 ◽  
Vol 54 (02) ◽  
pp. 515-517 ◽  
Author(s):  
E A Loeliger ◽  
L Poller ◽  
M Samama ◽  
J M Thomson ◽  
A M H P Van den Besselaar ◽  
...  

SummaryOne of the reasons why oral anticoagulants fell into disrepute is the absence of internationally accepted standardised procedures for controlling the level of anticoagulatiori. This deplorable situation resulted in over- and under-coagulation and uncertainty in the therapeutic range. International conformity can now be obtained by using an International Normalised Ratio (INR) which is derived from the individual result obtained in a given plasma sample and the International Sensitivity Index (ISI) of the tissue thromboplastin reagent used. Any thromboplastin reagent can be calibrated against an international primary or secondary W.H.O. reference preparation, so as to obtain its International Sensitivity Index. The new system of reporting the level of anticoagulation was designed and can only safely be applied in patients taking oral anticoagulants.


2004 ◽  
Vol 128 (3) ◽  
pp. 308-312
Author(s):  
William F. Brien ◽  
Linda Crawford ◽  
Anne Raby ◽  
Harold Richardson

Abstract Context.—The international normalized ratio (INR) has been used since 1983 to standardize prothrombin time results for patients on oral anticoagulants. However, significant interlaboratory variations have been noted. Attempts have been made to address these differences with the use of instrument-specific International Sensitivity Index (ISI) values and in-house calibration of ISI values. Objective.—To assess the performance of laboratories using a calibration curve for INR testing. Design.—Attempts to improve performance of the INR include the use of instrument-specific ISI values, model-specific ISI values, in-house calibration of ISI values, and more recently, the preparation of a calibration curve. Several studies have shown an improvement in performance using these procedures. In this study of licensed laboratories performing routine coagulation testing in the Province of Ontario, Canada, the determination of the INR by a calibration curve was compared with the laboratories' usual method of assessment. These methods were subsequently analyzed by comparing the results to instrument-specific ISI, model-specific ISI, and in-house calibrators. International normalized ratios derived by both methods were analyzed for accuracy and precision. The stability of a calibration curve was also investigated. Results.—Performance of INR testing has improved with use of a calibration curve or in-house calibrators. Conclusion.—The results confirm that either in-house calibrators or the calibration curve improve performance of INR testing. The calibration curve may be easier to use and appears stable up to 4 months.


1998 ◽  
Vol 80 (08) ◽  
pp. 258-262 ◽  
Author(s):  
Veena Chantarangkul ◽  
Marigrazia Clerici ◽  
Barbara Negri ◽  
Pier Mannuccio Mannucci ◽  
Armando Tripodi

SummaryCitrate concentration is one of the variables that can affect coagulation tests. However, few studies have so far been performed to assess the magnitude of this effect on coagulation tests in general and PT in particular. The aim of this study was to assess the extent of influence of citrate concentration on the PT test with results expressed as INR. Twelve reagent-instrument combinations (systems) were calibrated vs. the Reference Preparation BCT/441 using plasmas collected in either 105 mM or 129 mM citrate from normals and anticoagulated patients (OAT). PTs for plasmas collected in 129 mM citrate were longer than those collected in 105 mM both for normals and patients on OAT, but the ratios (patient-to-normal clotting times) for the two citrate concentrations were significantly different in many instances, implying that the International Sensitivity Index (ISI) is also different. ISIs for calibrations with plasmas collected in 105 mM were greater (up to 10%) than those with plasmas collected in 129 mM citrate. When PT ratios were transformed into INR using crossover ISIs (i.e., plasmas collected in 105 mM and ISI determined with plasmas collected in 129 mM citrate, or vice versa) we found that an INR of 4.5 could be up to 20% apart from the value that would have been obtained if the appropriate ISI was used. Moreover, if the ISI determined with the manual technique was used to convert PTs obtained with a particular instrument into INR, the effect of citrate concentration was even greater (INR difference up to 64%). Should these observations be valid for other systems, they might provide additional explanations for the frequent reports which document discrepancies in the INR determined with different systems to which incorrect ISI might have been applied. World-wide consensus on a single citrate concentration to collect patients’ as well as lyophilized plasmas to be used in External Quality Assessment Schemes and for local system calibration is therefore urgently needed.


1999 ◽  
Vol 82 (11) ◽  
pp. 1451-1455 ◽  
Author(s):  
L. L. Houbouyan-Reveillard ◽  
M. F. Aillaud ◽  
K. W. E. Denson ◽  
C. Droullé ◽  
M. Johnston ◽  
...  

SummaryThe interlaboratory variation of the International Normalized Ratio (INR) in various external quality assessment schemes is still relatively high. This is partly caused by inaccuracy of manufacturers’ stated International Sensitivity Index (ISI) and/or local instrumentation effects. The interlaboratory variation and accuracy of INR determinations may be improved by a local calibration procedure based on lyophilized plasmas with assigned INRs. The purpose of the present study was to determine INR values for different types of lyophilized plasmas to be used for local calibration. A total of 13 lyophilized plasmas (one normal, six from coumarin-treated patients, six artificially depleted) were analyzed by 10 laboratories, each using five calibrated prothrombin time (PT) systems. INRs were calculated for each plasma using each laboratory’s specific ISI and mean normal prothrombin time values. In the same way, five deep-frozen pooled plasmas from coumarin-treated patients were analyzed. There were significant INR differences for the lyophilized plasmas between the prothrombin time systems. The differences were relatively small for the deep-frozen coumarin plasmas (CV 2.6-3.3%) and three lyophilized coumarin plasmas from one manufacturer (CV 3.7-4.8%). Important INR differences were observed for three lyophilized coumarin plasmas from another manufacturer (CV 9.5-14.1%) and several artificially depleted plasmas (CV 5.3-12.8%). The citrate concentrations in the artificially depleted plasmas were lower than those in the normal and coumarin plasmas. These differences should be considered in the selection and certification of plasmas as calibrants for local calibration of PT systems. The lyophilized plasmas’ INR values obtained in the present study will be used for a field study of local PT calibration to assess their efficacy.


2011 ◽  
Vol 64 (10) ◽  
pp. 930-932 ◽  
Author(s):  
Leon Poller ◽  
Saied Ibrahim ◽  
Albert Pattison ◽  
Jørgen Jespersen ◽  

BackgroundThe prothrombin time/international normalised ratio (PT/INR) Line method to derive INR, based on only five European Concerted Action on Anticoagulation (ECAA) certified plasmas, is shown to be reliable in previous ECAA studies. A simpler method not requiring linear regression calculation would be an advantage.MethodAfter determining the local PT/INR Line, local INRs have been obtained using a readily available spreadsheet on the internet which laboratories can use without performing any additional calculations.ResultsExamples of INR derivation have been obtained from results at 16 centres using a range of local coagulometers with human thromboplastin international reference preparations (IRPs). The procedure does not require manual PT testing, local international sensitivity index calibration, availability of thromboplastin IRPs or local mean normal prothrombin time.ConclusionsFrom the PT/INR Line, INR values for local PT results are easily obtained using an Excel spreadsheet from our website (http://www.anticoagulants.co.uk/) which does not require the complex linear regression analysis to derive INR.


Sign in / Sign up

Export Citation Format

Share Document