scholarly journals Context-aware Music Recommender System Based on Implicit Feedback

2021 ◽  
Vol 36 (1) ◽  
pp. WI2-D_1-10
Author(s):  
Yasufumi Takama ◽  
Jing-cheng Zhang ◽  
Hiroki Shibata
Author(s):  
Jose Luis Jorro-Aragoneses ◽  
Guillermo Jimenez-Díaz ◽  
Juan Antonio Recio-García ◽  
Belén Díaz-Agudo

2017 ◽  
Vol 7 (12) ◽  
pp. 1211 ◽  
Author(s):  
Khalid Haruna ◽  
Maizatul Akmar Ismail ◽  
Suhendroyono Suhendroyono ◽  
Damiasih Damiasih ◽  
Adi Pierewan ◽  
...  

2020 ◽  
Vol 5 ◽  
pp. 21-30
Author(s):  
Oksana Chala ◽  
Lyudmyla Novikova ◽  
Larysa Chernyshova ◽  
Angelika Kalnitskaya

The problem of identifying shilling attacks, which are aimed at forming false ratings of objects in the recommender system, is considered. The purpose of such attacks is to include in the recommended list of items the goods specified by the attacking user. The recommendations obtained as a result of the attack will not correspond to customers' real preferences, which can lead to distrust of the recommender system and a drop in sales. The existing methods for detecting shilling attacks use explicit feedback from the user and are focused primarily on building patterns that describe the key characteristics of the attack. However, such patterns only partially take into account the dynamics of user interests. A method for detecting shilling attacks using implicit feedback is proposed by comparing the temporal description of user selection processes and ratings. Models of such processes are formed using a set of weighted temporal rules that define the relationship in time between the moments when users select a given object. The method uses time-ordered input data. The method includes the stages of forming sets of weighted temporal rules for describing sales processes and creating ratings, calculating a set of ratings for these processes, and forming attack indicators based on a comparison of the ratings obtained. The resulting signs make it possible to distinguish between nuke and push attacks. The method is designed to identify discrepancies in the dynamics of purchases and ratings, even in the absence of rating values at certain time intervals. The technique makes it possible to identify an approach to masking an attack based on a comparison of the rating values and the received attack indicators. When applied iteratively, the method allows to refine the list of profiles of potential attackers. The technique can be used in conjunction with pattern-oriented approaches to identifying shilling attacks


Author(s):  
Paolo Cremonesi ◽  
Primo Modica ◽  
Roberto Pagano ◽  
Emanuele Rabosio ◽  
Letizia Tanca

2021 ◽  
Author(s):  
Zainab Al-Zanbouri

Currently, there is a big increase in the usage of data analytics applications and services because of the growth in the data produced from different sources. The QoS properties such as response time and latency of these services are important factors to decide which services to select. As a result of IT expansion, energy consumption has become a big issue. Therefore, establishing a QoS-based web service recommender system that considers energy consumption as one of the essential QoS properties represents a significant step towards selecting the energy efficient web services. This dissertation presents an experimental study on energy consumption levels and latency behavior collected from a set of data mining web services running on different datasets. Our study shows that there is a strong relation between the dataset properties and the QoS properties. Based on the findings from this study, a recommender system is built which considers three dimensions (user, service, dataset). The energy consumption values of candidate services invoked by specific users can be predicted for a given dataset. Afterwards, these services can be ranked according to their predicted energy values and presented to users. We propose three approaches to build our recommender system and we treat it as a context-aware recommendation problem. The dataset is considered as contextual information and we use a context-aware matrix factorization model to predict energy values. In the first approach, we adopt the pre-filtering model where the contextual information serves as a query for filtering relevant rating data. In the second approach, we propose a new method for the pre-filtering implementation. Finally, in the last approach, we adopt the contextual modeling method and we explore different ways of representing dataset information as contextual factors to investigate their impacts on the recommendation accuracy. We compare the proposed approaches with the baseline approaches and the results show the effectiveness of the proposed ones. Also, we compare the performance of the three approaches to discover the best-fit approach when being measured using different metrics. Both prediction and recommendation accuracy of the proposed approaches are significantly better than the baseline models.


Author(s):  
Maryam Jallouli ◽  
Sonia Lajmi ◽  
Ikram Amous

In the last decade, social-based recommender systems have become the best way to resolve a user's cold start problem. In fact, it enriches the user's model by adding additional information provided from his social network. Most of those approaches are based on a collaborative filtering and compute similarities between the users. The authors' preliminary objective in this work is to propose an innovative context aware metric between users (called contextual influencer user). These new similarities are called C-COS, C-PCC and C-MSD, where C refers to the category. The contextual influencer user model is integrated into a social based recommendation system. The category of the items is considered as the most pertinent context element. The authors' proposal is implemented and tested within the food dataset. The experimentation proved that the contextual influencer user measure achieves 0.873, 0.874, and 0.882 in terms of Mean Absolute Error (MAE) corresponding to C-cos, C-pcc and C-msd, respectively. The experimental results showed that their model outperforms several existing methods.


Sign in / Sign up

Export Citation Format

Share Document