scholarly journals Acoustic methods in real-time welding process monitoring: Application and future potential advancement

2021 ◽  
Vol 15 (4) ◽  
pp. 8490-8507
Author(s):  
M. F. M. Yusof ◽  
Mahadzir Ishak ◽  
Mohd Fairusham Ghazali

The rapid advancement of the welding technology has simultaneously increased the demand for the online monitoring system in order to control the process. Among the methods that could be possibly used to assess the weld condition, an air-borne acoustic method grasps the attention from scholars due to its ability to provide a simple, non-contact, and low-cost measurement system. However, it is still lack of resources involving this subject in an attempt to deeply understand the emitted sound behaviour during welding especially when dealing with a complete deviation of a process parameter, welding types, workpiece material as well as the noise from the surrounding. This paper reviews the application of the acoustic method in monitoring the welding process. Specifically, this review emphasized the source of both structure-borne and air-borne acoustic during the welding process and the significance of applying the acoustic method in more detail. By focusing on the liquid state welding process, the scope of discussion converged on the arc and laser welding process. In the last part of this review, the potential future advancement of this method is pointed out before the overall conclusion is made.

2021 ◽  
Vol 15 (4) ◽  
pp. 8508-8517
Author(s):  
M. I. A. Latiff ◽  
I. Ismail ◽  
D.M. Nuruzzaman

The rapid advancement of the welding technology has simultaneously increased the demand for the online monitoring system in order to control the process. Among the methods that could be possibly used to assess the weld condition, an air-borne acoustic method grasps the attention from scholars due to its ability to provide a simple, non-contact, and low-cost measurement system. However, it is still lack of resources involving this subject in an attempt to deeply understand the emitted sound behaviour during welding especially when dealing with a complete deviation of a process parameter, welding types, workpiece material as well as the noise from the surrounding. This paper reviews the application of the acoustic method in monitoring the welding process. Specifically, this review emphasized the source of both structure-borne and air-borne acoustic during the welding process and the significance of applying the acoustic method in more detail. By focusing on the liquid state welding process, the scope of discussion converged on the arc and laser welding process. In the last part of this review, the potential future advancement of this method is pointed out before the overall conclusion is made.


Urban Climate ◽  
2021 ◽  
Vol 37 ◽  
pp. 100817
Author(s):  
Moritz Gubler ◽  
Andreas Christen ◽  
Jan Remund ◽  
Stefan Brönnimann
Keyword(s):  
Low Cost ◽  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Supakorn Harnsoongnoen ◽  
Nuananong Jaroensuk

AbstractThe water displacement and flotation are two of the most accurate and rapid methods for grading and assessing freshness of agricultural products based on density determination. However, these techniques are still not suitable for use in agricultural inspections of products such as eggs that absorb water which can be considered intrusive or destructive and can affect the result of measurements. Here we present a novel proposal for a method of non-destructive, non-invasive, low cost, simple and real—time monitoring of the grading and freshness assessment of eggs based on density detection using machine vision and a weighing sensor. This is the first proposal that divides egg freshness into intervals through density measurements. The machine vision system was developed for the measurement of external physical characteristics (length and breadth) of eggs for evaluating their volume. The weighing system was developed for the measurement of the weight of the egg. Egg weight and volume were used to calculate density for grading and egg freshness assessment. The proposed system could measure the weight, volume and density with an accuracy of 99.88%, 98.26% and 99.02%, respectively. The results showed that the weight and freshness of eggs stored at room temperature decreased with storage time. The relationship between density and percentage of freshness was linear for the all sizes of eggs, the coefficient of determination (R2) of 0.9982, 0.9999, 0.9996, 0.9996 and 0.9994 for classified egg size classified 0, 1, 2, 3 and 4, respectively. This study shows that egg freshness can be determined through density without using water to test for water displacement or egg flotation which has future potential as a measuring system important for the poultry industry.


2021 ◽  
pp. 016224392110345
Author(s):  
James Maguire

This paper explores an informal acoustic method developed by a group of industrial geologists working in geothermal energy landscapes in the southwest of Iceland. Through a series of ethnographic descriptions, this paper renders the work these geologists carry out in sonic terms, emphasizing how they use their bodies as sonic detectors in the production of geological evidence. Sound, the paper argues, is what allows geologists to make the intractable problem of volcanic cooling doable. It does this by differentiating two forms of evidence. Primary evidence, which ends up as data in geological reports, and secondary sonic evidence, which is what establishes that this primary evidence is, in fact, evidence. The paper introduces the concept data echoes as a way to think about how sound articulates between these evidential protocols. As echo, sound works as an outside, which, while remaining external to official protocols of knowledge production, nevertheless helps to constitute distinctions that are meaningful to the production of those categories. As data echoes through the various moments of data capture, analysis, and model building, sound’s temporal form helps to predict the time frame of volcanic cooling, as it affects both the immediate energy production scenarios and the long durée of volcanic time.


2008 ◽  
Vol 623 (1) ◽  
pp. 109-116 ◽  
Author(s):  
L.T. Gibson ◽  
W.J. Kerr ◽  
A. Nordon ◽  
J. Reglinski ◽  
C. Robertson ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Liang Hao ◽  
Lixin Guo ◽  
Shuwei Liu

Vehicle running state adaptive unscented Kalman filter soft-sensing algorithm is put forward in this paper based on traditional UKF which can estimate vehicle running state parameters and suboptimal Sage-Husa noise estimator which can effectively solve the problem of noises varying with time. Meanwhile 3-DOF dynamic model of vehicle and HSRI tire model are established. So vehicle running state can be accurately estimated by fusing the low-cost measurement information of longitudinal and lateral acceleration and handwheel steering angle. Under the typical working condition, AUKF soft-sensing algorithm is verified with substantial vehicle tests. Comparing with UKF soft-sensing algorithm, the result indicates AUKF soft-sensing algorithm has a good performance in robustness and is able to realize the effective estimation of vehicle running state more precisely than UKF soft-sensing algorithm.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Rashiqah Rashli ◽  
Elmi Abu Bakar ◽  
Shahrul Kamaruddin

Ultrasonic welding had been widely used in various manufacturing industries such as aviation, medical, electronic device and many more. It offers a continued safe operation, faster and also low cost as it able to join weld part less than one second and also simple to maintain the tooling devices. Though ultrasonic welding brings a lot of advantages in assembly especially in thermoplastic material of manufacturing product, it also has a dominant problem to be deal with. The problem in ultrasonic welding is poor weld quality due to improper selection of ultrasonic welding parameters especially in near field configuration. Thus, an optimal combination of parameters is crucial in order to produce good quality weld assembly for this configuration. In this paper, ultrasonic welding process, ultrasonic weld joint defects and determination of optimal parameters for thermoplastic material had been discussed thoroughly. 


2016 ◽  
Vol 45 (2) ◽  
pp. 118-122
Author(s):  
G. Gopala Krishna ◽  
P.Ram Reddy ◽  
M.Manzoor Hussain

In recent year’s aluminium and aluminium alloys are most widely used in many applications because of light weight, good formability and malleability, corrosion resistance, moderate strength and low cost. Friction Stir Welding (FSW) process is efficient and cost effective method for welding aluminium and aluminium alloys. FSW is a solid state welding process that means the material is not melted during the process. Complete welding process accomplishes below the melting point of materials so it overcomes many welding defects that usually happens with conventional fusion welding technique which were initially used for low melting materials. Though this process is initially developed for low melting materials but now process is widely used for a variety of other materials including titanium, steel and also for composites. The present butt jointed FSW experimental work has been done in two ways. Initially a comparison of tensile properties of friction stir (FS) welded similar aluminium alloy (AA6351 with AA6351) and dissimilar aluminium alloy (AA6351 with AA5083) combinations. Later the effect of impurities (copper and brass) in sheet form (0.1 mm thick) when used as insert in between two dissimilar aluminium alloy (AA6351 with AA5083) plates during FSW. Tensile tests were performed for these combinations and results were compared for with and without using strip material (copper and brass).


Sign in / Sign up

Export Citation Format

Share Document