The role of insulin-like growth factor I in growth of diabetic rats

1989 ◽  
Vol 121 (5) ◽  
pp. 628-632 ◽  
Author(s):  
Katharina Binz ◽  
Jürgen Zapf ◽  
E. Rudolf Froesch

Abstract. Insulin-deficient, streptozotocin-diabetic rats show severe metabolic disturbances and stop growing. Besides insulin, these animals also lack growth hormone and insulin-like growth factor-I. We examined whether or not growth parameters correlate with IGF-I serum levels in young rats with streptozotocin-diabetes of different severity. In the diabetic rats, blood glucose varied between 18.4 and 38.6 mmol/1 (healthy controls between 6.1 and 9.3), IGF-I serum levels between 2.6 and 15.6 nmol/1 (controls between 19.6 and 26.5), and serum insulin levels between 0.05 and 0.14 nmol/1 (controls between 0.36 and 0.55). We found a highly significant linear correlation between IGF-I serum levels and the two investigated growth parameters, tibial epiphyseal width and longitudinal tibial bone growth. The finding that these indices of growth are strongly correlated with IGF-I serum levels in young rats with diabetes of different severity, suggests that IGF-I is a major determinant of growth. This is in keeping with our earlier demonstration that exogenously infused IGF-I promotes growth in diabetic rats.

1998 ◽  
pp. 176-180 ◽  
Author(s):  
Z Laron ◽  
B Klinger

Serum gonadotrophins. androgens, insulin and insulin-like growth factor-I (IGF-I) were determined before and during long-term treatment with recombinant IGF-I of seven males with Laron syndrome, and the changes correlated with changes in testicular volume and penile size. The subjects were four boys below the age of 5, two boys aged 10 and 14 but prepubertal and one 28-year-old fully sexually developed adult. IGF-I was administered by a once daily subcutaneous injection of 150 microg/kg per day to the boys and 120 microg/kg per day to the adult patient. In the very young boys no change in serum gonadotrophins, androgens, gonads or genitals was registered. In the two older boys and the adult patient, there was a progressive rise in luteinizing hormone, follicle-stimulating hormone and testosterone. Concomitantly, there was an increase in size of the testes and penile length. The two boys started puberty. As very high serum IGF-I levels were registered in the adult patient, the daily dose was progressively decreased to 70 microg/kg per day. Stopping the IGF-I administration in this patient, according to the protocol, led to a return to pretreatment serum levels and testicular and penile size. This report shows for the first time a direct effect of IGF-I on sex hormones and sex organs in the male.


1996 ◽  
Vol 6 (S1) ◽  
pp. 146-146
Author(s):  
D. Agnusdei ◽  
M. B. Franci ◽  
S. Gonnelli ◽  
C. Santacroce ◽  
A. Camporeale ◽  
...  

2012 ◽  
Vol 3 ◽  
pp. 234-239 ◽  
Author(s):  
Agnieszka Adamek ◽  
Aldona Kasprzak ◽  
Agnieszka Seraszek ◽  
Hanna Mikoś ◽  
Aleksandra Bura ◽  
...  

1992 ◽  
Vol 134 (3) ◽  
pp. 485-492 ◽  
Author(s):  
J. Verhaeghe ◽  
A. M. H. Suiker ◽  
W. J. Visser ◽  
E. Van Herck ◽  
R. Van Bree ◽  
...  

ABSTRACT Spontaneously diabetic BB rats have a markedly depressed longitudinal bone growth and bone formation/turnover. In this study, male diabetic BB rats were infused intraperitoneally or subcutaneously for 2 weeks with hormones that are believed to stimulate skeletal growth and/or trabecular bone formation: insulin (3 or 4 U/day), human GH (hGH; 400 mU/day), recombinant human insulin-like growth factor-I (rhIGF-I; 300 or 600 μg/day) and testosterone (80 μg/100 g body weight per day). Saline-treated diabetic BB rats had decreased plasma concentrations of IGF-I and osteocalcin (OC) (OC, 3·7 ±0·3 vs 13·1 ± 0·8 (s.e.m.) nmol/l in controls); bone histomorphometry showed decreased epiphyseal width, osteoblast surface (0·04±0·04 vs 1·5±0·3%) and osteoid surface, and mineral apposition rate (MAR) (1·8±0·5 vs 7·9±0·6 μm/day). Testosterone and hGH infusions had no effect on weight loss or on decreased skeletal growth and bone formation of diabetic rats, nor did they increase plasma IGF-I concentrations. Insulin infusions into diabetic rats resulted in hyperinsulinaemia and accelerated weight gain. The epiphyseal width, osteoblast/osteoid surfaces and OC levels of insulin-treated rats were normalized or stimulated well above control values (osteoblast surface, 4·3 ±0·8%; plasma OC, 16·1 ± 1·4 nmol/l); the MAR (4·0 ± 0·9 μm/day) was only partly corrected after the 2-week infusion. Infusions of rhIGF-I into diabetic rats doubled but did not restore plasma IGF-I levels to normal; weight gain, however, was similar to that in control rats. IGF-I treatment had no effect on epiphyseal width, osteoblast/osteoid surfaces and OC concentrations, but improved the decreased MAR (4·6±1·2 μm/day). These results indicate (1) that the decreased epiphyseal width and osteoblast recruitment of diabetic BB rats are directly related to their insulin deficiency, and (2) that IGF-I, administered systemically, corrects, in part, the decreased MAR in diabetes, suggesting a role in osteoblast function and/or mineralization. Journal of Endocrinology (1992) 134, 485–492


2021 ◽  
Vol 42 ◽  
pp. 72-89
Author(s):  
HJ Kok ◽  
◽  
CN Crowder ◽  
L Koo Min Chee ◽  
HY Choi ◽  
...  

Insulin-like growth factor I (IGF-I) is essential for muscle and bone development and a primary mediator of growth hormone (GH) actions. While studies have elucidated the importance of IGF-I specifically in muscle or bone development, few studies to date have evaluated the relationship between muscle and bone modulated by IGF-I in vivo, during post-natal growth. Mice with muscle-specific IGF-I overexpression (mIgf1+/+) were utilised to determine IGF-I- and muscle-mass-dependent effects on craniofacial skeleton development during post-natal growth. mIgf1+/+ mice displayed accelerated craniofacial bone growth when compared to wild-type animals. Virus-mediated expression of IGF-I targeting the masseter was performed to determine if post-natal modulation of IGF-I altered mandibular structures. Increased IGF-I in the masseter affected the mandibular base plane angle in a lateral manner, increasing the width of the mandible. At the cellular level, increased muscle IGF-I also accelerated cartilage thickness in the mandibular condyle. Importantly, mandibular length changes associated with increased IGF-I were not present in mice with genetic inhibition of muscle IGF-I receptor activity. These results demonstrated that muscle IGF-I could indirectly affect craniofacial growth through IGF-I-dependent increases in muscle hypertrophy. These findings have clinical implications when considering IGF-I as a therapeutic strategy for craniofacial disorders.


Sign in / Sign up

Export Citation Format

Share Document