Metformin ameliorates extreme insulin resistance in a patient with anti-insulin receptor antibodies: description of insulin receptor and postreceptor effects in vivo and in vitro

1992 ◽  
Vol 126 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Salvatore Di Paolo

The effect of metformin on insulin binding and insulin action in the presence of anti-insulin receptor antibodies was investigated in a case of type B extreme insulin resistance. Oral administration of metformin (1 500 mg/d) for 10 days significantly decreased plasma blood glucose and insulin levels and enhanced the hypoglycemic response to exogenous insulin. In vitro preincubation of normal erythrocytes with insulin receptor antibody from the patient plus 4× 10−5 mol/l metformin markedly enhanced insulin binding to receptors, compared to cells incubated with antibody alone. This effect was apparent after 2 h, was maximal after 4 h and did not change up to 24 h. Closely similar results were found when human adipocytes were studied. Analysis of binding data confirmed the increase in both receptor number and affinity. One hour exposure of control adipocytes to metformin enhanced basal lipogenesis by more than 30%. Acute exposure of fat cells to the patient's receptor antibodies resulted in a stimulation of glucose transport and a state of severe insulin resistance. The addition of metformin to antibody in preincubation buffer strongly enhanced basal glucose incorporation into lipids, but did not prevent insulin unresponsiveness. It is suggested that metformin increases, possibly through a change in the spatial conformation of insulin receptor within the plasma membrane, the availability of preexisting receptors to insulin binding and/or decreases the availability of specific epitopes to antibody anchoring. Further, in the model of insulin resistance described here, metformin enhanced the basal rate of glucose transport through a direct insulin-mimicking activity and/or a potentiation of the sensitivity of glucose transport to the antibody.

2009 ◽  
Vol 160 (5) ◽  
pp. 785-790 ◽  
Author(s):  
Eirini Maratou ◽  
Dimitrios J Hadjidakis ◽  
Anastasios Kollias ◽  
Katerina Tsegka ◽  
Melpomeni Peppa ◽  
...  

ObjectiveAlthough clinical hypothyroidism (HO) is associated with insulin resistance, there is no information on insulin action in subclinical hypothyroidism (SHO).Design and methodsTo investigate this, we assessed the sensitivity of glucose metabolism to insulin both in vivo (by an oral glucose tolerance test) and in vitro (by measuring insulin-stimulated rates of glucose transport in isolated monocytes with flow cytometry) in 21 euthyroid subjects (EU), 12 patients with HO, and 13 patients with SHO.ResultsAll three groups had comparable plasma glucose levels, with the HO and SHO having higher plasma insulin than the EU (P<0.05). Homeostasis model assessment index was increased in HO (1.97±0.22) and SHO (1.99±0.13) versus EU (1.27±0.16, P<0.05), while Matsuda index was decreased in HO (3.89±0.36) and SHO (4.26±0.48) versus EU (7.76±0.87, P<0.001), suggesting insulin resistance in both fasting and post-glucose state. At 100 μU/ml insulin: i) GLUT4 levels on the monocyte plasma membrane were decreased in both HO (215±19 mean fluorescence intensity, MFI) and SHO (218±24 MFI) versus EU (270±25 MFI, P=0.03 and 0.04 respectively), and ii) glucose transport rates in monocytes from HO (481±30 MFI) and SHO (462±19 MFI) were decreased versus EU (571±15 MFI, P=0.04 and 0.004 respectively).ConclusionsIn patients with HO and SHO: i) insulin resistance was comparable; ii) insulin-stimulated rates of glucose transport in isolated monocytes were decreased due to impaired translocation of GLUT4 glucose transporters on the plasma membrane; iii) these findings could justify the increased risk for insulin resistance-associated disorders, such as cardiovascular disease, observed in patients with HO or SHO.


1989 ◽  
Vol 257 (3) ◽  
pp. E418-E425 ◽  
Author(s):  
M. O. Sowell ◽  
S. L. Dutton ◽  
M. G. Buse

Denervation (24 h) of skeletal muscle causes severe postreceptor insulin resistance of glucose transport and glycogen synthesis that is demonstrable in isolated muscles after short (30 min) preincubations. After longer preincubations (2-4 h), the insulin response of glucose transport increased to normal, whereas glycogen synthesis remained insulin resistant. Basal and insulin-stimulated amino acid transport were significantly lower in denervated muscles than in controls after short or long incubations, although the percentage stimulation of transport by insulin was not significantly different. The development of glucose transport insulin resistance after denervation was not attributable to increased sensitivity to glucocorticoids or adenosine. The selective in vitro reversal of glucose transport insulin resistance was not dependent on medium composition, did not require protein or prostaglandin synthesis, and could not be attributed to release of a positive regulator into the medium. The data suggest 1) the insulin receptor in muscle stimulates glucose transport by a signaling pathway that is not shared by other insulin-sensitive effector systems, and 2) denervation may affect insulin receptor signal transduction at more than one site.


1987 ◽  
Vol 253 (3) ◽  
pp. E300-E304 ◽  
Author(s):  
H. Yki-Jarvinen ◽  
K. Kubo ◽  
J. Zawadzki ◽  
S. Lillioja ◽  
A. Young ◽  
...  

It is unclear from previous studies whether qualitative or only quantitative differences exist in insulin action in adipocytes obtained from obese subjects with non-insulin-dependent diabetes mellitus (NIDDM) when compared with equally obese nondiabetic subjects. In addition, the role of changes in insulin binding as a cause of insulin resistance in NIDDM is still controversial. We compared the sensitivities of glucose transport and antilipolysis to insulin and measured insulin binding in abdominal adipocytes obtained from 45 obese nondiabetic (% fat, 41 +/- 1), 25 obese diabetic (% fat, 40 +/- 1), and 15 nonobese (% fat, 30 +/- 1) female southwestern American Indians. Compared with the nonobese group, the sensitivities of glucose transport and antilipolysis were reduced in both the obese nondiabetic and obese diabetic groups. Compared with the obese nondiabetic subjects, the ED50 for stimulation of glucose transport was higher in the obese patients with NIDDM (171 +/- 38 vs. 92 +/- 10 pM, P less than 0.005). In contrast, the ED50s for antilipolysis were similar in obese diabetic patients (32 +/- 6 pM) and obese nondiabetic subjects (27 +/- 3 pM). No difference was found in insulin binding in patients with NIDDM when compared with the equally obese nondiabetic subjects. These data indicate 1) the mechanism of insulin resistance differs in NIDDM and obesity, and 2) the selective loss of insulin sensitivity in NIDDM precludes changes in insulin binding as a cause of insulin resistance in this disorder.


1996 ◽  
Vol 135 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Wolfgang Moritz ◽  
Marianne Böni-Schnetzler ◽  
Wayne Stevens ◽  
E Rudolf Froesch ◽  
James R Levy

Moritz W, Böni-Schnetzler M, Stevens W, Froesch ER, Levy JR. In-frame exon 2 deletion in insulin receptor RNA in a family with extreme insulin resistance in association with defective insulin binding. Eur J Endocrinol 1996;135:357–63. ISSN 0804–4643 The phenotype and allelic expression of the insulin receptor gene is presented in a family with a patient with type A insulin resistance. Compared to controls, insulin receptor binding in transformed lymphocytes was 100%, 33% and 13% in the father, mother and proband, respectively. Reduced insulin receptor binding co-segregated with altered insulin receptor mRNA expression; the mother and daughter expressed eight insulin receptor mRNA species, including a set of four normal sized and a set of four shorter mRNA transcripts. In the proband the levels of the normal sized mRNA transcripts were suppressed relative to the shorter transcripts. Reverse polymerase chain reaction (PCR) revealed that the shorter transcripts contained an in-frame deletion of exon 2. Sequencing of the entire insulin receptor coding region revealed a paternally inherited A to T substitution in nucleotide 3205, converting isoleucine 996 to phenylalanine. which does not co-segregate with reduced binding. Therefore, we hypothesize that two findings are necessary for the presentation of type A insulin resistance in this patient: an in-frame deletion of the insulin receptor exon 2 that codes for amino acids crucial for insulin binding; and an inhibition of expression of the paternal insulin receptor allele. Marianne Böni-Schnetzler, Division of Endocrinology and Metabolism, Department of Internal Medicine, University Hospital, 8091 Zurich, Switzerland


Endocrinology ◽  
2005 ◽  
Vol 146 (8) ◽  
pp. 3417-3427 ◽  
Author(s):  
Peter J. Klover ◽  
Alicia H. Clementi ◽  
Robert A. Mooney

Abstract Obesity and insulin resistance are considered chronic inflammatory states, in part because circulating IL-6 is elevated. Exogenous IL-6 can induce hepatic insulin resistance in vitro and in vivo. The importance of endogenous IL-6, however, to insulin resistance of obesity is unresolved. To test the hypothesis that IL-6 contributes to the inflammation and insulin resistance of obesity, IL-6 was depleted in Lepob mice by injection of IL-6-neutralizing antibody. In untreated Lepob mice, signal transducer and activator of transcription-3 (STAT3) activation was increased compared with that in lean controls, consistent with an inflammatory state. With IL-6 depletion, activation of STAT3 in liver and adipose tissue and expression of haptoglobin were reduced. Expression of the IL-6-dependent, hepatic acute phase protein fibrinogen was also decreased. Using the hyperinsulinemic-euglycemic clamp technique, insulin-dependent suppression of endogenous glucose production was 89% in IL-6-depleted Lepob mice, in contrast to only 32% in Lepob controls, indicating a marked increase in hepatic insulin sensitivity. A significant change in glucose uptake in skeletal muscle after IL-6 neutralization was not observed. In a direct comparison of hepatic insulin signaling in Lepob mice treated with anti-IL-6 vs. IgG-treated controls, insulin-dependent insulin receptor autophosphorylation and activation of Akt (pSer473) were increased by nearly 50% with IL-6 depletion. In adipose tissue, insulin receptor signaling showed no significant change despite major reductions in STAT3 phosphorylation and haptoglobin expression. In diet-induced obese mice, depletion of IL-6 improved insulin responsiveness in 2-h insulin tolerance tests. In conclusion, these results indicate that IL-6 plays an important and selective role in hepatic insulin resistance of obesity.


1983 ◽  
Vol 104 (4_Suppl) ◽  
pp. S67-S69
Author(s):  
Ulf Smith

ABSTRACT. Insulin resistance plays a major role for the reduced glucose tolerance in obesity, type II diabetes and stress. Both in vivo and in vitro studies strongly support the major importance of post-receptor perturbations as the cause of the insulin resistance in these conditions. One likely level for the post-receptor alterations is the reported reduction in glucose transport. Key words: Insulin resistance, diabetes, obesity, insulin receptors, glucose transport.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Mathilde Sollier ◽  
Marine Halbron ◽  
Jean Donadieu ◽  
Ahmed Idbaih ◽  
Fleur Cohen Aubart ◽  
...  

Background. Langerhans Cell Histiocytosis (LCH) is a rare inflammatory neoplasm characterized by an infiltration of organs by Langerin + (CD207+) and CD1a+ histiocytes. Diabetes insipidus is a frequent manifestation of the disease, while diabetes mellitus is very rare. We report the first case of a 20-year-old man suffering from hypothalamopituitary histiocytosis and diabetes mellitus with serum anti-insulin receptor antibodies. Case Presentation. A 20-year-old patient was admitted for the evaluation of growth delay and hyperphagia. HbA1c level and fasting blood glucose were in the normal range. The diagnosis of hypothalamopituitary histiocytosis was based on histological features after biopsy of a large suprachiasmatic lesion identified on magnetic resonance imaging (MRI). Association of vinblastine and purinethol was started followed by a second-line therapy by cladribine. During the follow-up, the patient was admitted for recurrence of hyperglycemic states and extreme insulin resistance. The screening for serum anti-insulin receptor antibodies was positive. Each episode of hyperglycemia appeared to be correlated with tumoral activity and increase in serum anti-insulin receptor antibodies and appeared to be improved when the disease was controlled by chemotherapy. Conclusion. We report the first description of a hypothalamopituitary histiocytosis associated with serum anti-insulin receptor antibodies, extreme insulin resistance, and diabetes. Parallel evolution of glucose levels and serum anti-insulin receptor antibodies seemed to be the consequence of immune suppressive properties of cladribine.


Sign in / Sign up

Export Citation Format

Share Document