Human chorionic gonadotropin binding sites in the human endometrium

1993 ◽  
Vol 129 (1) ◽  
pp. 15-19 ◽  
Author(s):  
S Bhattacharya ◽  
J Banerjee ◽  
S Sen ◽  
PR Manna

The existence of high-affinity and low-capacity specific binding sites for luteinizing hormone (LH)/human chorionic gonadotropin (hCG) has been reported in porcine, rabbit and rat uteri. We have identified hCG binding sites in the human endometrium collected from 35–42-year-old ovulatory and anovulatory women. The binding characteristics of hCG to endometrial tissue preparations from ovulatory and anovulatory women showed saturability with high affinity and low capacity. Scatchard plot analysis showed the dissociation constant of specific binding sites in the ovulatory women to be 3.5 × 10−10 mol/l and in anovulatory women to be 3.1 × 10−10 mol/l. The maximum binding capacity varied considerably between ovulatory (3.85 nmol/kg protein) and anovulatory (6.12 nmol/kg protein) endometrium. Among the divalent metal ions tested (Zn2+, Mg2+, Mn2+, Ca2+—4 mol/l), Zn2+ effected a remarkable increase in [125I]hCG binding to the endometrium (p<0.005) whereas Mn2+ showed a marginal increase and other metal ions did not have any effect. Data obtained with human endometrium indicate an influence of the functional state of the ovary on [125I]hCG binding to endometrium.

1995 ◽  
Vol 41 (2) ◽  
pp. 28-30
Author(s):  
T. S. Saatov ◽  
F. Ya. Gulyamova ◽  
G. U. Usmanova

Besides intracellular receptors of thyroid hormones, specific binding sites for T3 and T4 were detected on plasma membranes (PM) of some cells and a relationship between membrane reception .and lipid composition of membranes shown. The parameters of 125I-T4 binding to highly purified PM of hepatic and cerebral cells of rats were studied. The hepatic and cerebral cellular membranes were found to contain two sites of hormone binding each, one of these sites being characterized by a high affinity and low capacity, and the other by low affinity and a higher binding capacity. The association constant of highly affine site of hepatocyte membranes was found to be higher than that of brain cell membranes. T4 membranous receptors may be significant in the process of cell “recognition" by the hormone. In vivo and in vitro experiments with 125I-T4 and 14C-labeled thyroxin in ganglioside fractions showed appreciable binding of the hormone to Gm3 fraction, this evidently pointing to participation of this, ganglioside in T4 interaction with membrane receptor. It is possible that gangliosides situated on membranous surface are components of or function as receptors.


1996 ◽  
Vol 150 (2) ◽  
pp. 179-186 ◽  
Author(s):  
M J Pesek ◽  
M A Sheridan

Abstract Somatostatins are a diverse family of peptides that influence various aspects of animal growth, development, and metabolism. Recent work in our laboratory has shown that somatostatins stimulate hepatic lipolysis in rainbow trout. In this study we characterized somatostatin-binding sites in trout hepatic membrane preparations. We also examined changes in binding characteristics brought about by food deprivation. Binding of [Tyr11]-somatostatin-14 (SS-14) was saturable, reversible, and time- and temperature-dependent. Under optimal conditions, [Tyr11]-SS-14 specific binding averaged 5·7 ± 0·3%. While SS-14 and SS-28 (an N-terminally extended form of SS-14 and derived from the same gene as SS-14) displaced [Tyr11]-SS-14 specific binding (ED50 values of approximately 50 nm and 100 nm respectively), salmon SS-25 (containing [Tyr7,Gly10]-SS-14 at its C terminus and presumably derived from a gene different from that giving rise to SS-14/SS-28), except at pharmacological concentrations, did not. Significant specific binding was also detected in brain, esophagus, stomach, upper and lower intestine, pancreas, and adipose tissue. Scatchard analysis suggested the existence of two classes of hepatic somatostatin-binding sites: a high-affinity site with a Kd of 23 nm and Bmax of 1·4 pmol/mg protein and a low-affinity site with a Kd of 379 nm and Bmax of 4·9 pmol/mg protein. Fasting resulted in reduced growth and elevated plasma levels of SS-14 compared with fed animals. SS-14 binding capacity of the high-affinity class in liver membranes isolated from fasted fish increased by 120% over that from fed counter-parts. No difference in Kd for the high-affinity binding class or in either Kd or Bmax of the low-affinity class was noted between fasted and fed animals. These data support the role of the liver as a target of somatostatin and suggest that fasting enhances hepatic sensitivity to SS-14 binding. Journal of Endocrinology (1996) 150, 179–186


1977 ◽  
Author(s):  
G. Marguerie

The calcium binding properties of bovin fibrinogen have been studied using equilibrium dialysis method. At pH 7.5 fibrinogen has 3 specific calcium binding sites of high affinity and several non specific binding sites of low affinity. Direct titration of the calcium induced proton release indicates that the binding center is a chelate. Thermal an acid denaturation is found to be markedly influenced by the presence of Ca++, suggesting that structural features are related to the binding. However the circular dichroism spectra show that no generalized conformational change is induced when Ca++ is bound to the protein.The plasminic digestion of fibrinogen is also found to be specificaly influenced by Ca++. The velocity of the initial cleavages is slightly reduced in the presence of calcium. It is therefore suggested that the C-terminal part of the Aα chain is involved in the binding.Considering the dimeric structure of the fibrinogen molecule, the presence of only 3 calcium binding sites of high affinity suggests the existence of “salt bridges” between the constitutive polypeptide chains.


1987 ◽  
Author(s):  
C M Chesney ◽  
D D Pifer

Gel filtered human platelets (GFP) collected in Tyrode's buffer containing 0.5 mM Ca+2, ImM Mg+2, and 0.35% albumin exhibit high affinity binding of 3H-PAF with a Kd of 0.109 α 0.029 nM (mean α SD; n=13) and 267 α 70 sites per platelet. When fibrinogen (1.67 mg/ml final concentration) is added to these GFP preparations biphasic aggregation is observed with PAF (4 nM). Normal aggregation is also observed with other platelet agonists including ADP, epinephrine, collagen, arachidonic acid, A23187 and thrombin. If GFP is prepared without added Ca+2 or Mg+2 in the presence of 3mM EDTA, platelets do not aggregate in response to PAF. However the number of specific binding sites remains unchanged (387 per platelet) with some decrease in affinity of binding (Kd = 0.2l4nM). In the presence of ImM Mg+2 there is no significant difference in binding kinetics over a range of Ca+2 concentrations (0-2mM). On the other hand the calcium channel blocker verapamil (5-10uM) exhibits competitive inhibition of 3H-PAF as analyzed by Lineweaver-Burk plots. Specific binding of 3H-PAF to GFP in the presence of ImM Mg+2 and ImM EGTA shows Kd of 0.l66nM but with increase in specific binding sites to 665. Despite increase in number of sites and no change in binding affinity, GFP under these conditions does not exhibit platelet aggregation with PAF in doses up to 80 nM.From these data it appears that external Ca+2 is not necessary for specific binding of 3H-PAF to its high affinity receptor. However, calcium does appear to be necessary for second wave aggregation with PAF. While Mg+2 appears to enhance 3H-PAF binding to platelets Mg+2 cannot substitute for Ca+2 in PAF induced platelet aggregation. Although verapamil appears to competitively inhibit binding of PAF to GFP it is not clear whether the inhibition is due to competition at or near the actual PAF receptor or at a site involving the calcium channel.


1981 ◽  
Vol 88 (3) ◽  
pp. 339-349 ◽  
Author(s):  
J. BÍRÓ

Globulin preparations (41) from patients with Graves's disease (positive to thyroid stimulating immunoglobulins; TSI) and 12 from healthy persons (TSI-negative) were tested for their specific thyrotrophin (TSH)-binding properties. Globulins from both groups possessed binding sites for 131I-labelled TSH. The mean dissociation constant (Kd) was 6·8 pmol/l per mg globulin and the maximum specific binding (Bmax) was 3·0 pmol/mg globulin per 1 for the TSI-negative control group. Twenty-four (58·5%) globulin preparations from the TSI-positive group had similar TSH-binding characteristics with mean Kd of 7·2 pmol/l per mg globulin and Bmax of 3·6 pmol/mg globulin per 1 (A-type binding) but the remaining 17 (41·5%) bound TSH in a different fashion with Kd of 71·5 pmol/l per mg globulin and Bmax of 13·6 pmol/mg globulin per 1 (B-type binding). Both types of specific TSH binding reached the maximal level within 1 h of incubation and had an optimum pH of 7–8. There was a linear correlation between the amount of bound TSH and the globulin content of the samples. Both types of binding were reversible by the addition of an excess of TSH and gonadotrophins, ACTH, prolactin and insulin competed with TSH for the binding sites only when in relatively high concentrations. The binding sites were associated with macromolecules; they emerged with the void volume after chromatography on Sephadex G-200 and migrated with immunoglobulin G (IgG) on paper electrophoresis. The binding capacity of the globulin preparations could be decreased by preincubation with antiserum to human IgG or with human thyroid membranes.


1999 ◽  
Vol 161 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Y Zhang ◽  
TA Marchant

The present study constitutes the characterization of a specific, high-affinity GH-binding protein (GHBP) in the serum of a teleost, the goldfish (Carassius auratus). GH-binding assay and ligand blotting techniques were employed to identify GHBPs in goldfish serum and hepatocyte culture medium. The binding characteristics and apparent molecular weights (Mr) of goldfish GHBPs were also compared with those of rabbit and rat. LIGAND analysis identified a single class of high-affinity and low-capacity binding sites for iodinated recombinant carp GH (rcGH) in the goldfish serum, with an association constant (Ka) of 20.1x10(9) M-1 and a maximum binding capacity (Bmax) of 161 fmol ml-1 serum. A single class of binding sites for iodinated recombinant sea bream GH and bovine GH (bGH) was also found in goldfish serum, but with a much lower affinity than that of rcGH. The binding affinity for iodinated bGH in rabbit and rat sera was found to be similar to that reported previously. Ligand blotting revealed multiple forms of GHBPs in sera of goldfish, rabbit and rat with Mr ranging from 70 kDa to 400 kDa and 27 kDa to 240 kDa under non-reducing and reducing conditions respectively. A prominent band with Mr of 66 kDa and a minor band with Mr of 27 kDa were observed to occur in sera from all three species under reducing conditions. Iodoacetamide promoted the shedding of three GHBPs with Mr of 25, 40 and 45 kDa from the cultured goldfish hepatocytes. The appearance of all bands was completely inhibited by the presence of excess unlabeled rcGH. Our results provide clear evidence that a GHBP exists in the goldfish and indicate that more information on teleost GHBPs is needed if the physiology of growth in teleosts is to be fully understood.


1991 ◽  
Vol 128 (2) ◽  
pp. 187-NP ◽  
Author(s):  
V. J. Ayad ◽  
S. E. F. Guldenaar ◽  
D. C. Wathes

ABSTRACT Some of the binding characteristics of a novel oxytocin receptor ligand 125I-labelled [1-(β-mercapto-β, β-cyclopentamethylene propionic acid), 2-(ortho-methyl)-Tyr2,Thr4,Orn8,Tyr9-NH2]-vasotocin ([125I]OTA) have been determined in the sheep uterus. The compound was subsequently used for the autoradiographic localization of oxytocin receptors in the uterus and oviduct of the ewe. Specific binding of [125I]OTA to crude membrane fractions of ovine endometrium was time-dependent and was unaffected by the addition of cations to incubation media. Endometrial membranes contained a single population of saturable, high-affinity binding sites for the iodinated ligand (dissociation constant (Kd) 0·23±0·08 nmol/l) and unlabelled oxytocin competed with [125I]OTA for binding sites with high affinity (Kd 1·29±0·4 nmol/l) in the presence of Mg2+ In contrast, unlabelled OTA was able to compete with high affinity (Kd 1·13±0·16 nmol/l) in the absence of cation. Competition studies with a number of oxytocin analogues and related peptides and the tissue distribution of [125I]OTA binding sites also indicated that [125I]OTA bound to the ovine oxytocin receptor. This was further validated by autoradiographic studies which showed specific labelling with [125I]OTA to be greater to uterus and oviduct obtained from ewes which had been killed within 2 days of oestrus than to similar tissue from ewes killed during the luteal phase. In both the ampullary and isthmic regions of the oviduct and the myometrium, [125I]OTA binding sites were confined to smooth muscle. Endometrial binding sites for [125I]OTA were consistently located on the luminal epithelium and epithelial cells lining secretory glands. In addition, in one ewe which had been killed 2 days after cloprostenol treatment, stromal cells were labelled in a caruncular region of the endometrium. The consistency of this observation between similar animals remains to be determined. The autoradiographic technique demonstrated appears sufficiently sensitive to allow further studies into the distribution of the endometrial oxytocin receptor throughout the oestrous cycle, and into its regulation at luteolysis and during the establishment of pregnancy. Journal of Endocrinology (1991) 128, 187–195


1999 ◽  
Vol 8 (1) ◽  
pp. 53-62 ◽  
Author(s):  
H. S. Euzger ◽  
R. J. Flower ◽  
N. J. Goulding ◽  
M. Perretti

Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN). These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.


1983 ◽  
Vol 244 (1) ◽  
pp. E72-E82 ◽  
Author(s):  
J. Penit ◽  
M. Faure ◽  
S. Jard

Rat aortic smooth muscle cells were isolated and maintained in primary culture. After 2-3 days, cells recovered their contractile phenotype and could be induced to contract in response to vasopressin and angiotensin II. Vasopressin- and angiotensin-specific binding sites were detected on these cells, using tritiated Lys8-vasopressin, Asn1-Val5-angiotensin II, and Sarc1-Ile8-angiotensin II. Vasopressin binding sites had Kd values of 30 and 12 nM for Lys8-and Arg8-vasopressin, respectively, and a maximal binding capacity of 25,000 sites/cell. They displayed several of the expected characteristics of vasopressin receptors involved in the vasopressor response in vivo. A highly significant correlation was found between the relative agonistic or antagonistic vasopressor potencies of a series of vasopressin structural analogues and their relative abilities to inhibit [3H]vasopressin binding to aortic smooth muscle cells. Specific binding sites for Asn1-Val5-angiotensin II and Sarc1-Ile8-angiotensin II had the following characteristics: Kd = 2.3 and 1.3 nM, respectively; maximal capacity: 50,000 sites/cell. Vasopressin and angiotensin did not modify the intracellular cyclic AMP content of aortic smooth muscle cells.


1990 ◽  
Vol 258 (5) ◽  
pp. E740-E747
Author(s):  
M. Molnar ◽  
F. Hertelendy

The specific binding of prostaglandins (PG) F2 alpha and E2 was studied in a rat myometrial membrane-enriched fraction during the latter part of gestation and parturition, as well as in the postpartal period. Tritiated PGE2 and PGF2 alpha binding was specific, saturable, time dependent, and directly proportional to the amount of membrane protein. Scatchard analysis indicated the presence of high-affinity (Kd2) and low-affinity (Kd2) binding sites for both PGs. The affinity of both binding sites for PGF2 alpha and the apparent Kd2 for PGE2 remained essentially the same throughout gestation and post-partially and were similar to nonpregnant rats. The apparent Kd1 of PGE2, however, increased by 10-fold from day 21 of gestation to 1 day postpartum. Although the maximal binding capacity of the high-affinity (Bmax1) and low-affinity (Bmax2) binding sites of PGF2 alpha showed a nonsignificant increase compared with prepartum values, reaching maximal values 12-24 h postpartum, those of PGE2 showed a significant increase on the third day after delivery. The concentration of prostanoids in uterine venous plasma and amniotic fluid increased significantly with approaching parturition, whereas plasma progesterone decreased, raising the estradiol-progesterone ratio 25-fold. After unilateral fetectomy, the binding sites for PGF2 alpha and PGE2 increased significantly compared with the contralateral pregnant horns. Administration of the PG synthetase inhibitor, indomethacin, also increased two- to threefold both PGF2 alpha and PGE2 binding compared with the placebo group, whereas intrauterine administration of PGF2 alpha and PGE2 significantly reduced it.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document