Morphology of muscle attachment sites and microarhitecture of underlying bone as the markers of physical activities of past populations

2013 ◽  
Author(s):  
Ksenija Djukic ◽  
Petar Milovanovic ◽  
Michael Hahn ◽  
Bjoern Busse ◽  
Michael Amling ◽  
...  
1994 ◽  
Vol 14 (6) ◽  
pp. 4145-4154
Author(s):  
P Armand ◽  
A C Knapp ◽  
A J Hirsch ◽  
E F Wieschaus ◽  
M D Cole

We have found that a novel basic helix-loop-helix (bHLH) protein is expressed almost exclusively in the epidermal attachments sites for the somatic muscles of Drosophila melanogaster. A Drosophila cDNA library was screened with radioactively labeled E12 protein, which can dimerize with many HLH proteins. One clone that emerged from this screen encoded a previously unknown protein of 360 amino acids, named delilah, that contains both basic and HLH domains, similar to a group of cellular transcription factors implicated in cell type determination. Delilah protein formed heterodimers with E12 that bind to the muscle creatine kinase promoter. In situ hybridization with the delilah cDNA localized the expression of the gene to a subset of cells in the epidermis which form a distinct pattern involving both the segmental boundaries and intrasegmental clusters. This pattern was coincident with the known sites of attachment of the somatic muscles to tendon cells in the epidermis. delilah expression persists in snail mutant embryos which lack mesoderm, indicating that expression of the gene was not induced by attachment of the underlying muscles. The similarity of this gene to other bHLH genes suggests that it plays an important role in the differentiation of epidermal cells into muscle attachment sites.


1999 ◽  
Vol 145 (1) ◽  
pp. 191-201 ◽  
Author(s):  
Doris Martin ◽  
Susan Zusman ◽  
Xitong Li ◽  
Erin L. Williams ◽  
Narmada Khare ◽  
...  

We report the molecular and functional characterization of a new α chain of laminin in Drosophila. The new laminin chain appears to be the Drosophila counterpart of both vertebrate α2 (also called merosin) and α1 chains, with a slightly higher degree of homology to α2, suggesting that this chain is an ancestral version of both α1 and α2 chains. During embryogenesis, the protein is associated with basement membranes of the digestive system and muscle attachment sites, and during larval stage it is found in a specific pattern in wing and eye discs. The gene is assigned to a locus called wing blister (wb), which is essential for embryonic viability. Embryonic phenotypes include twisted germbands and fewer pericardial cells, resulting in gaps in the presumptive heart and tracheal trunks, and myotubes detached from their target muscle attachment sites. Most phenotypes are in common with those observed in Drosophila laminin α3, 5 mutant embryos and many are in common with those observed in integrin mutations. Adult phenotypes show blisters in the wings in viable allelic combinations, similar to phenotypes observed in integrin genes. Mutation analysis in the eye demonstrates a function in rhabdomere organization. In summary, this new laminin α chain is essential for embryonic viability and is involved in processes requiring cell migration and cell adhesion.


2018 ◽  
Author(s):  
Sandra B. Lemke ◽  
Thomas Weidemann ◽  
Anna-Lena Cost ◽  
Carsten Grashoff ◽  
Frank Schnorrer

Cells in a developing organism are subjected to particular mechanical forces, which shape tissues and instruct cell fate decisions. How these forces are sensed and transmitted at the molecular level is thus an important question, which has mainly been investigated in cultured cells in vitro. Here, we elucidate how mechanical forces are transmitted in an intact organism. We studied Drosophila muscle attachment sites, which experience high mechanical forces during development and require integrin-mediated adhesion for stable attachment to tendons. Hence, we quantified molecular forces across the essential integrin-binding protein Talin, which links integrin to the actin cytoskeleton. Generating flies expressing three FRET-based Talin tension sensors reporting different force levels between 1 and 11 pN enabled us to quantify physiologically-relevant, molecular forces. By measuring primary Drosophila muscle cells, we demonstrate that Drosophila Talin experiences mechanical forces in cell culture that are similar to those previously reported for Talin in mammalian cell lines. However, in vivo force measurements at developing flight muscle attachment sites revealed that average forces across Talin are comparatively low and decrease even further while attachments mature and tissue-level tension increases. Concomitantly, Talin concentration at attachment sites increases five-fold as quantified by fluorescence correlation spectroscopy, suggesting that only few Talin molecules are mechanically engaged at any given time. We therefore propose that high tissue forces are shared amongst a large excess of adhesion molecules of which less than 15% are experiencing detectable forces at the same time. Our findings define an important new concept of how cells can adapt to changes in tissue mechanics to prevent mechanical failure in vivo.


Fossil Record ◽  
2016 ◽  
Vol 20 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Bruce M. Rothschild

Abstract. A recent report suggesting perceived limitations of and opportunities in the study of paleopathology suggested the importance of incorporation of scientific methodologies. It seems reasonable to also explore how those methodologies are developed and, indeed, how one approaches paleopathology as a science. The development of one such paleopathologist is delineated from his serendipitous observations to application of hypothesis generation and subsequent testing approach developed during basic medical science education. This approach resulted in recognition of how much he thought he knew was actually contrary to the facts. A critical factor was the collaborative approach with specialists in other fields, wherein linguistic confusion was overcome and perspectives refined by point–counterpoint analysis of hypotheses. The limited reliability of tertiary information was clearly exposed through examination of primary sources – original articles rather than what might be referred to as "meta-analyses". It became clear that linguistics was not the only challenge; application of techniques had to be observed and validated. Without validation one might obtain precision (method repeatedly reveals same results) but at the expense of accuracy (assurance that the method actually assesses the question). Paleontological studies are generally limited to examination of organisms and their traces. Archeologically based studies incorporate additional sources of information (e.g., historic), but are no less subject to such semantic and methodological issues. Proof of concept studies provided new windows to recognition not only of disease but to previous anatomical challenges (e.g., localization of direct muscle attachment sites and distribution). Trans-phylogenetic representation of disease falsified speculation that "evolution" would preclude analysis through time. Pathology is an intrinsic component of life and transcends both species and time. Knowledge gained in a given species and time can be applied to similar disease manifestations in other species in modern time. Once speculations were tested and either verified or falsified, paleo-epidemiologic approach allowed identification of patterns of spread and even application of that knowledge to recognition of human migration patterns. Proof of concept studies provided new windows to recognition not only of disease but to previous anatomical challenges (e.g., localization of direct muscle attachment sites and distribution).


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 519-528 ◽  
Author(s):  
T A Bunch ◽  
R Salatino ◽  
M C Engelsgjerd ◽  
L Mukai ◽  
R F West ◽  
...  

Abstract This paper presents the characterization of nine alleles of myospheroid, which encodes the beta PS subunit of the Drosophila PS integrins. On Southern blots, the mysXB87, mysXN101 and mysXR04 genes yield restriction digest patterns similar to that seen for wild-type chromosomes, however the mys1 and mysXG43 genes contain detectable deletions. mys1, mysXB87 and mysXG43 make little or no stable protein product, and genetically behave as strong lethal alleles. For the mysXN101 mutation, protein product is seen on immunoblots and a reduced amount of beta PS protein is seen at muscle attachment sites of embryos; this mutant protein retains some wild-type function, as revealed by complementation tests with weak alleles. Protein is also seen on immunoblots from mysXR04 embryos, and this allele behaves as an antimorph, being more deleterious in some crosses than the complete deficiency for the locus. mysts2 and mysnj42 are typically lethal in various combinations with other alleles at high temperatures only, but even at high physiological temperatures, neither appears to eliminate gene function completely. The complementation behaviors of mysts1 and mysts3 are quite unusual and suggest that these mutations involve regulatory phenomena. For mysts3, the data are most easily explained by postulating transvection effects at the locus. The results for mysts1 are less straightforward, but point to the possibility of a chromosome pairing-dependent negative interaction.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2607-2615 ◽  
Author(s):  
M.D. Martin-Bermudo

Changes in the extracellular matrix (ECM) govern the differentiation of many cell types during embryogenesis. Integrins are cell matrix receptors that play a major role in cell-ECM adhesion and in transmitting signals from the ECM inside the cell to regulate gene expression. In this paper, it is shown that the PS integrins are required at the muscle attachment sites of the Drosophila embryo to regulate tendon cell differentiation. The analysis of the requirements of the individual alpha subunits, alphaPS1 and alphaPS2, demonstrates that both PS1 and PS2 integrins are involved in this process. In the absence of PS integrin function, the expression of tendon cell-specific genes such as stripe and beta1 tubulin is not maintained. In addition, embryos lacking the PS integrins also exhibit reduced levels of activated MAPK. This reduction is probably due to a downregulation of the Epidermal Growth Factor receptor (Egfr) pathway, since an activated form of the Egfr can rescue the phenotype of embryos mutant for the PS integrins. Furthermore, the levels of the Egfr ligand Vein at the muscle attachment sites are reduced in PS mutant embryos. Altogether, these results lead to a model in which integrin-mediated adhesion plays a role in regulating tendon cell differentiation by modulating the activity of the Egfr pathway at the level of its ligand Vein.


Sign in / Sign up

Export Citation Format

Share Document