scholarly journals Mendelian randomization studies of biomarkers and type 2 diabetes

2015 ◽  
Vol 4 (4) ◽  
pp. 249-260 ◽  
Author(s):  
Ali Abbasi

Many biomarkers are associated with type 2 diabetes (T2D) risk in epidemiological observations. The aim of this study was to identify and summarize current evidence for causal effects of biomarkers on T2D. A systematic literature search in PubMed and EMBASE (until April 2015) was done to identify Mendelian randomization studies that examined potential causal effects of biomarkers on T2D. To replicate the findings of identified studies, data from two large-scale, genome-wide association studies (GWAS) were used: DIAbetes Genetics Replication And Meta-analysis (DIAGRAMv3) for T2D and the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) for glycaemic traits. GWAS summary statistics were extracted for the same genetic variants (or proxy variants), which were used in the original Mendelian randomization studies. Of the 21 biomarkers (from 28 studies), ten have been reported to be causally associated with T2D in Mendelian randomization. Most biomarkers were investigated in a single cohort study or population. Of the ten biomarkers that were identified, nominally significant associations with T2D or glycaemic traits were reached for those genetic variants related to bilirubin, pro-B-type natriuretic peptide, delta-6 desaturase and dimethylglycine based on the summary data from DIAGRAMv3 or MAGIC. Several Mendelian randomization studies investigated the nature of associations of biomarkers with T2D. However, there were only a few biomarkers that may have causal effects on T2D. Further research is needed to broadly evaluate the causal effects of multiple biomarkers on T2D and glycaemic traits using data from large-scale cohorts or GWAS including many different genetic variants.

Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.


2020 ◽  
Author(s):  
Heejin Jin ◽  
Sanghun Lee ◽  
Sungho Won

Multiple studies have demonstrated the effects of type 2 diabetes (T2D) on various human diseases; however, most of these were observational epidemiological studies that suffered from many potential biases including reported confounding and reverse causations. In this article, we investigated whether cancer and vascular disease can be affected by T2D-related traits, including fasting plasma glucose (FPG), 2-h postprandial plasma glucose (2h-PG), and glycated hemoglobin A1c (HbA1c) levels, by using Mendelian randomization (MR). The summary statistics for FPG, 2h-PG, and HbA1c were obtained through meta-analyses of large-scale genome-wide association studies that included data from 133,010 non-diabetic individuals from collaborating Meta-Analysis of Glucose and Insulin related traits Consortium studies. Thereafter, based on the statistical assumptions for MR analyses, the most reliable approaches including inverse-variance-weighted (IVW), MR-Egger, MR-Egger with a simulation extrapolation (SIMEX), weighted median and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) methods were applied to identify traits affected by FPG, 2h-PG, and HbAlc. We found that coronary artery disease is affected by FPG, as per the IVW [log odds ratio (logOR): 0.21; P=0.012], MR-Egger (SIMEX) (logOR: 0.22; P=0.014), MR-PRESSO (logOR: 0.18; P=0.045), and weighted median (logOR: 0.29; P<0.001) methods, but not as per the MR-Egger (logOR: 0.13; P=0.426) approach. Furthermore, low-density lipoprotein cholesterol levels are affected by HbA1c, as per the IVW (beta (B): 0.23; P=0.015), MR-Egger (B: 0.45; P=0.046), MR-Egger (SIMEX) (B: 0.27; P=0.007), MR-PRESSO (B; 0.14; P=0.010), and the weighted median (B: 0.15; P=0.012) methods. Further studies of the associated biological mechanisms are required to validate and understand the disease-specific differences identified in the TD2-related causal effects of each trait.


2022 ◽  
Vol 12 ◽  
Author(s):  
Yong-Bo Wang ◽  
Si-Yu Yan ◽  
Xu-Hui Li ◽  
Qiao Huang ◽  
Li-Sha Luo ◽  
...  

Background: Previous observational studies have reported a bidirectional association between periodontitis and type 2 diabetes, but the causality of these relationships remains unestablished. We clarified the bidirectional causal association through two-sample Mendelian randomization (MR).Methods: We obtained summary-level data for periodontitis and type 2 diabetes from several published large-scale genome-wide association studies (GWAS) of individuals of European ancestry. For the casual effect of periodontitis on type 2 diabetes, we used five independent single-nucleotide polymorphisms (SNPs) specific to periodontitis from three GWAS. The summary statistics for the associations of exposure-related SNPs with type 2 diabetes were drawn from the GWAS in the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) consortium and the FinnGen consortium R5 release, respectively. For the reversed causal inference, 132 and 49 SNPs associated with type 2 diabetes from the DIAGRAM consortium and the FinnGen consortium R5 release were included, and the summary-level statistics were obtained from the Gene-Lifestyle Interactions in Dental Endpoints consortium. Multiple approaches of MR were carried out.Results: Periodontitis was not causally related with the risk of type 2 diabetes (all p &gt; 0.05). No causal effect of type 2 diabetes on periodontitis was found (all p &gt; 0.05). Estimates were consistent across multiple MR analyses.Conclusion: This study based on genetic data does not support a bidirectional causal association between periodontitis and type 2 diabetes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhiyong Cui ◽  
Hui Feng ◽  
Baichuan He ◽  
Yong Xing ◽  
Zhaorui Liu ◽  
...  

BackgroundIt remains unclear whether an increased risk of type 2 diabetes (T2D) affects the risk of osteoarthritis (OA).MethodsHere, we used two-sample Mendelian randomization (MR) to obtain non-confounded estimates of the effect of T2D and glycemic traits on hip and knee OA. We identified single-nucleotide polymorphisms (SNPs) strongly associated with T2D, fasting glucose (FG), and 2-h postprandial glucose (2hGlu) from genome-wide association studies (GWAS). We used the MR inverse variance weighted (IVW), the MR–Egger method, the weighted median (WM), and the Robust Adjusted Profile Score (MR.RAPS) to reveal the associations of T2D, FG, and 2hGlu with hip and knee OA risks. Sensitivity analyses were also conducted to verify whether heterogeneity and pleiotropy can bias the MR results.ResultsWe did not find statistically significant causal effects of genetically increased T2D risk, FG, and 2hGlu on hip and knee OA (e.g., T2D and hip OA, MR–Egger OR = 1.1708, 95% CI 0.9469–1.4476, p = 0.1547). It was confirmed that horizontal pleiotropy was unlikely to bias the causality (e.g., T2D and hip OA, MR–Egger, intercept = −0.0105, p = 0.1367). No evidence of heterogeneity was found between the genetic variants (e.g., T2D and hip OA, MR–Egger Q = 30.1362, I2 &lt; 0.0001, p = 0.6104).ConclusionOur MR study did not support causal effects of a genetically increased T2D risk, FG, and 2hGlu on hip and knee OA risk.


2020 ◽  
Author(s):  
Zhiyong Cui ◽  
Hui Feng ◽  
Baichuan He ◽  
Yong Xing ◽  
Zhaorui Liu ◽  
...  

Abstract Background: It remains unclear whether an increased risk of type 2 diabetes (T2D) affects the risk of osteoarthritis (OA). Methods: Here, we used two-sample Mendelian randomization (MR) to obtain non-confounded estimates of the effect of T2D and glycemic traits on hip and knee OA. We identified single nucleotide polymorphisms (SNPs) strongly associated with T2D, fasting glucose (FG) and 2-hour postprandial glucose (2hGlu) from genome-wide association studies (GWAS) . We used MR inverse variance weighted (IVW), the MR-Egger method, the weighted median (WM) and Robust Adjusted Profile Score (MR.RAPS) to reveal the associations of T2D, FG and 2hGlu with hip and knee OA risk. Sensitivity analyses were also conducted to verify whether heterogeneity and pleiotropy can bias the MR results.Results: We did not find statistically significant causal effects of genetically increased T2D risk, FG and 2hGlu on hip and knee OA (e.g., T2D and hip OA, MR-Egger OR=0.9536, 95% CI 0.5585 to 1.6283, p=0.8629). It was confirmed that horizontal pleiotropy was unlikely to bias the causality (e.g., T2D and hip OA, MR-Egger, intercept=-0.0032, p=0.8518). No evidence of heterogeneity was found between the genetic variants (e.g., T2D and hip OA, MR-Egger Q=40.5481, I2=0.1368, p=0.2389). Conclusions: Our MR study did not support causal effects of a genetically increased T2D risk, FG and 2hGlu on hip and knee OA risk.


2019 ◽  
Author(s):  
Ana Viñuela ◽  
Arushi Varshney ◽  
Martijn van de Bunt ◽  
Rashmi B. Prasad ◽  
Olof Asplund ◽  
...  

AbstractMost signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, many key tissues and cell-types required for appropriate functional inference are absent from large-scale resources such as ENCODE and GTEx. We explored the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using RNA-Seq and genotyping data from 420 islet donors. We find: (a) eQTLs have a variable replication rate across the 44 GTEx tissues (<73%), indicating that our study captured islet-specific cis-eQTL signals; (b) islet eQTL signals show marked overlap with islet epigenome annotation, though eQTL effect size is reduced in the stretch enhancers most strongly implicated in GWAS signal location; (c) selective enrichment of islet eQTL overlap with the subset of T2D variants implicated in islet dysfunction; and (d) colocalization between islet eQTLs and variants influencing T2D or related glycemic traits, delivering candidate effector transcripts at 23 loci, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in tissues of greatest disease-relevance while expanding our mechanistic insights into complex traits association loci activity with an expanded list of putative transcripts implicated in T2D development.


2020 ◽  
Vol 11 ◽  
Author(s):  
Heejin Jin ◽  
Sanghun Lee ◽  
Sungho Won

Multiple studies have demonstrated the effects of type 2 diabetes (T2D) on various human diseases; however, most of these were observational epidemiological studies that suffered from many potential biases including reported confounding and reverse causations. In this article, we investigated whether cancer and vascular disease can be affected by T2D-related traits, including fasting plasma glucose (FPG), 2-h postprandial glucose (2h-PG), and glycated hemoglobin A1c (HbA1c) levels, by using Mendelian randomization (MR). The summary statistics for FPG, 2h-PG, and HbA1c level were obtained through meta-analyses of large-scale genome-wide association studies that included data from 133,010 nondiabetic individuals from collaborating Meta-analysis of Glucose and Insulin Related Traits Consortium studies. Thereafter, based on the statistical assumptions for MR analyses, the most reliable approaches including inverse-variance-weighted (IVW), MR-Egger, MR-Egger with a simulation extrapolation (SIMEX), weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods were applied to identify traits affected by FPG, 2h-PG, and HbAlc. We found that coronary artery disease is affected by FPG, as per the IVW [log odds ratio (logOR): 0.21; P = 0.012], MR-Egger (SIMEX) (logOR: 0.22; P = 0.014), MR-PRESSO (logOR: 0.18; P = 0.045), and weighted median (logOR: 0.29; P &lt; 0.001) methods but not as per the MR-Egger (logOR: 0.13; P = 0.426) approach. Furthermore, low-density lipoprotein cholesterol levels are affected by HbA1c, as per the IVW [beta (B): 0.23; P = 0.015), MR-Egger (B: 0.45; P = 0.046), MR-Egger (SIMEX) (B: 0.27; P = 0.007), MR-PRESSO (B; 0.14; P = 0.010), and the weighted median (B: 0.15; P = 0.012] methods. Further studies of the associated biological mechanisms are required to validate and understand the disease-specific differences identified in the TD2-related causal effects of each trait.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shiu Lun Au Yeung ◽  
Jie V Zhao ◽  
C Mary Schooling

Abstract Background Observational studies suggest poorer glycemic traits and type 2 diabetes associated with coronavirus disease 2019 (COVID-19) risk although these findings could be confounded by socioeconomic position. We conducted a two-sample Mendelian randomization to clarify their role in COVID-19 risk and specific COVID-19 phenotypes (hospitalized and severe cases). Method We identified genetic instruments for fasting glucose (n = 133,010), 2 h glucose (n = 42,854), glycated hemoglobin (n = 123,665), and type 2 diabetes (74,124 cases and 824,006 controls) from genome wide association studies and applied them to COVID-19 Host Genetics Initiative summary statistics (17,965 COVID-19 cases and 1,370,547 population controls). We used inverse variance weighting to obtain the causal estimates of glycemic traits and genetic predisposition to type 2 diabetes in COVID-19 risk. Sensitivity analyses included MR-Egger and weighted median method. Results We found genetic predisposition to type 2 diabetes was not associated with any COVID-19 phenotype (OR: 1.00 per unit increase in log odds of having diabetes, 95%CI 0.97 to 1.04 for overall COVID-19; OR: 1.02, 95%CI 0.95 to 1.09 for hospitalized COVID-19; and OR: 1.00, 95%CI 0.93 to 1.08 for severe COVID-19). There were no strong evidence for an association of glycemic traits in COVID-19 phenotypes, apart from a potential inverse association for fasting glucose albeit with wide confidence interval. Conclusion We provide some genetic evidence that poorer glycemic traits and predisposition to type 2 diabetes unlikely increase the risk of COVID-19. Although our study did not indicate glycemic traits increase severity of COVID-19, additional studies are needed to verify our findings.


2017 ◽  
Author(s):  
Jorien L. Treur ◽  
Mark Gibson ◽  
Amy E Taylor ◽  
Peter J Rogers ◽  
Marcus R Munafò

AbstractStudy Objectives:Higher caffeine consumption has been linked to poorer sleep and insomnia complaints. We investigated whether these observational associations are the result of genetic risk factors influencing both caffeine consumption and poorer sleep, and/or whether they reflect (possibly bidirectional) causal effects.Methods:Summary-level data were available from genome-wide association studies (GWAS) on caffeine consumption (n=91,462), sleep duration, and chronotype (i.e., being a ‘morning’ versus an ‘evening’ person) (both n=128,266), and insomnia complaints (n=113,006). Linkage disequilibrium (LD) score regression was used to calculate genetic correlations, reflecting the extent to which genetic variants influencing caffeine consumption and sleep behaviours overlap. Causal effects were tested with bidirectional, two-sample Mendelian randomization (MR), an instrumental variable approach that utilizes genetic variants robustly associated with an exposure variable as an instrument to test causal effects. Estimates from individual genetic variants were combined using inverse-variance weighted meta-analysis, weighted median regression and MR Egger regression methods.Results:There was no clear evidence for genetic correlation between caffeine consumption and sleep duration (rg=0.000,p=0.998), chronotype (rg=0.086,p=0.192) or insomnia (rg=-0.034,p=0.700). Two-sample Mendelian randomization analyses did not support causal effects from caffeine consumption to sleep behaviours, or the other way around.Conclusions:We found no evidence in support of genetic correlation or causal effects between caffeine consumption and sleep. While caffeine may have acute effects on sleep when taken shortly before habitual bedtime, our findings suggest that a more sustained pattern of high caffeine consumption is likely associated with poorer sleep through shared environmental factors.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ming-Kai Tsai ◽  
Hui-Min David Wang ◽  
Jeng-Chuan Shiang ◽  
I-Hung Chen ◽  
Chih-Chiang Wang ◽  
...  

Diabetes is a serious global health problem. Large-scale genome-wide association studies identified loci for type 2 diabetes mellitus (T2DM), including adiponectin (ADIPOQ) gene and transcription factor 7-like 2 (TCF7L2), but few studies clarified the effect of genetic polymorphisms ofADIPOQandTCF7L2on risk of T2DM. We attempted to elucidate association between T2DM and polymorphic variations of both in Taiwan’s Chinese Han population, with our retrospective case-control study genotyping single nucleotide polymorphisms (SNPs) inADIPOQandTCF7L2genes both in 149 T2DM patients and in 139 healthy controls from Taiwan. Statistical analysis gauged association of these polymorphisms with risk of T2DM to showADIPOQrs1501299 polymorphism variations strongly correlated with T2DM risk(P=0.042), with rs2241766 polymorphism being not associated with T2DM(P=0.967). However, both polymorphisms rs7903146 and rs12255372 ofTCF7L2were rarely detected in Taiwanese people. This study avers thatADIPOQrs1501299 polymorphism contributes to risk of T2DM in the Taiwanese population.


Sign in / Sign up

Export Citation Format

Share Document